Current Trends of Biodiversity Research in Mizoram

H Lalramnghinglova Vanramliana H Lalthanzara

Current Trends of Biodiversity Research in Mizoram

H Lalramnghinglova Vanramliana H Lalthanzara

Current Trends of Biodiversity Research in Mizoram H Lalramnghinglova, Vanramliana, H Lalthanzara

SCIENTIFIC BOOK CENTRE Hengrabari Housing Road, Dispur, Guwahati - 781 006. ASSAM, INDIA PH:- +91361-2232846, Mob:- +919435149890. Email:- scientificbks@gmail.com

Branch Offices:-No. G6/195, Sector 16, Rohini, Delhi - 110085. INDIA Mob:- +919818435279. Email:- dbc2003@rediffmail.com

H No. CC-62/2420-2421 (SFCERA-10), Mother Teresa Lane, P.O. Kaloor, Kochi – 682017. KERALA, INDIA PH:- +91484-2337870, Mob:- +919447300752. Email:- sbcbook@rediffmail.com

ISBN: 978-81-287-0015-6 2016 © Authors Price : ₹ 300.00

All rights reserved. Except for brief quotations in critical articles or reviews, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner and the publisher

Published by:- C. Sasi Kumar for Scientific Book Centre

ABOUT THE AUTHORS

Prof. H. Lalramnghinglova completed his B.Sc. from St. Edmund's College, Shillong, M.Sc (Botany) and Ph.D. from NEHU, Shillong. He had been teaching in Lunglei Govt. College for ten years (1978-1988); worked as Forest Botanist in E&F Dept. Govt. of Mizoram (1988-2003); joined Mizoram University as Reader(2003-2004) and became a Professor since 2005 onwards.He holds the posts of Head of the Department of Environmental Science for two terms (2003-2007 & 2009-2013) and Dean of the School of Earth Sciences & Natural Resources Management (2007-2009). Having 20 years of teaching experience; and 17 years of research experience, He has written 4 books (including edited books), 2 booklets & 1 manual and more than 50 research papers in national and international journals and periodicals. He has been invited for lecture at the state, regional and national levels seminars and conferences. He takes initiatives and organized tree plantation programme in the University Campus on World Environment Day, 5th June, every year since 2003 onwards. He has guided 12 Ph.D scholars, 4 on the pipe-line and 5 registered. He undertook research projects from GBPIEHD, NIPER, NMPB/ SMPB, MoEF, UGC, DBT & ICFRE. He has been awarded for outstanding contribution in the field of Non-Wood Forest Products

CONTENTS

Abo	out the Authors	υ
Ack	nowledgements	vii
Intr	oduction	viii
List	of Contributors	xi
1.	Global Biodiversity: An Overview	1
	H. Lalramnghinglova	1
2.	Barcoding Culex Mosquitoes: A Potential	
	Vector of Japanese Encephalitis in Mizoram	17
	Lal Ringngheti, Lalramliana, Vanramliana	17
3.	Comparison of Diversity and Population	
	Dynamics of Centipede (Chilopoda) Under	
	Shifting Cultivation and Forest Ecosystem	
	in Mizoram	30
	H. Lalthanzara, Betsy Zodinpuii, Lalnuntluanoa	50
4.	A Preliminary Study on the Helminth	
	Parasite of Freshwater Fishes in Mizoram	45
	Malsawmtluangi, Lalramliana, Vanramliana	
5.	Laboratory Evaluation of the Pathogenicity	
	of three Entomopathogenic Nematodes against	
	Larvae of Greater Wax Moth. Galleria	
	mellonella (L.) From Mizoram	60
	Vanlalhlimpuia, Lalramdinthara Chenhual	00
	Vanramliana, Lalramliana	

Choice of Oviposition Site by Micobar Frog, Hylarana nicobariensis (Amphibia: Anura) H.T. Lalremsanga, Saipari Sailo,		List a	of Contributors	xvii
Hylarana nicobartensis (inipilitia: Anura) H.T. Lalremsanga, Saipari Sailo,				
H.I. Lairemsanga, Surpart Sarto,	70	15	6 10 11 10 100	
a t IC him a Varte K N K Hooroo	/0	15.	Status and Composition of Ground-Herb	
C. Lalfamkima varie, retrine 1100100			of Paintain Maria Dia in Chi	
Occurrence of Orectinomis Hossumbicus in			ST Lalagragani Lalagragani	206
Rivers of Mizorani. A boon of A bane?	80	16	Distribution Pattern and Crowth	
Beihrosa Solo, Lainunituungu, Lairamliana	09	10.	Behavior of Rhadadendron arhoreum Sm	
Assessment of Rivers in Mizoram using Length-			along an Elevation Gradient in Mizoram	221
Weight Relationship and Condition Factor of Fishes	100		B. Malsawmkima, U.K. Sahoo	221
Bibian K. Lalchhuanliana, Lalrinzuali,	100	17.	Ecological Studies of the Community	
C. Lalfakawmı, Lalramlıana			Structure of Tawi Wildlife Sanctuary	232
Estimating Density and Relative Abundance			Lallawmkimi, H. Lalramnghinglova,	202
of Kalij Pheasant Lophura Leucomelanos in			Hilda Lalrinpuii	
and around Lengteng Wildlife Sanctuary	109	18.	Isolation and Characterization Resistance	
H. Lalthanzara, Lalawmawia Sailo,			Gene Analogues (RGAs) from Banana	
G.S. Solanki, S.N. Ramanujam			Cultivars of Mizoram	242
New Records, Monitoring the Threats			Pachuau Lalrinfela, Laltanpuia,	
and Conservation of Bats in the			R. Lalengmawia, Robert Thangjam	
Lengteng Wildlife Sanctuary	118	19.	Comparison of Different Hierarchical Clustering	
C. Vanlalnghaka	110		Methods in Analyzing Species Composition	256
A Report on Soil Macrofungi in some			Lalpawimawha	
Selected Sites of Mizoram	122		Index	271
H. Lalrinawmi, John Zothanzama	152		Index	2/1
Algal Diversity of Fastern Aigand Ci	1/2			
Zothanmania H I almost	142			
Fungal Diversity D. 11				
College Communication of the College Communic				
Vanlalhauri D. L. D. C.	149			
Bamba Ralte, P.C. Vanlalhluna				
Mine Wine Source of	SELEN -			
Uncrocrystalline Cellulose (MCC)	182			
David C. Vanlalfakawma, Lalduhsanga Pachuau,				
Shri Kant Tripathi				
	Beihrosa Solo, Lalnuntluanga, Lalramliana Assessment of Rivers in Mizoram using Length- Weight Relationship and Condition Factor of Fishes Bibian K. Lalchhuanliana, Lalrinzuali, C. Lalfakawmi, Lalramliana Estimating Density and Relative Abundance of Kalij Pheasant Lophura Leucomelanos in and around Lengteng Wildlife Sanctuary H. Lalthanzara, Lalawmawia Sailo, G.S. Solanki, S.N. Ramanujam New Records, Monitoring the Threats and Conservation of Bats in the Lengteng Wildlife Sanctuary C. Vanlalnghaka A Report on Soil Macrofungi in some Selected Sites of Mizoram H. Lalrinawmi, John Zothanzama Algal Diversity of Eastern Aizawl City Zothanmawia, H. Lalruatsanga Fungal Diversity in Pachhunga University College Campus Vanlalhruaii Ralte, P.C. Vanlalhluna Bamboo - A New Source of Microcrystalline Cellulose (MCC) David C. Vanlalfakawma, Lalduhsanga Pachuau, Shri Kant Tripathi	Beihrosa Solo, Lalnuntluanga, Lalramliana89Assessment of Rivers in Mizoram using Length- Weight Relationship and Condition Factor of Fishes100Bibian K. Lalchhuanliana, Lalrinzuali, C. Lalfakawmi, Lalramliana100Estimating Density and Relative Abundance of Kalij Pheasant Lophura Leucomelanos in and around Lengteng Wildlife Sanctuary109H. Lalthanzara, Lalawmawia Sailo, G.S. Solanki, S.N. Ramanujam109New Records, Monitoring the Threats and Conservation of Bats in the Lengteng Wildlife Sanctuary118C. Vanlalnghaka118A Report on Soil Macrofungi in some Selected Sites of Mizoram132H. Lahrnawmi, John Zothanzama Algal Diversity in Pachhunga University College Campus149Vanlalhruaii Ralte, P.C. Vanlalhluna Bamboo - A New Source of Microcrystalline Cellulose (MCC)182Oxid C. Vanlalfakawma, Lalduhsanga Pachuau, Shri Kant Tripathi181	Beihrosa Solo, Lalnuntluanga, Lalramliana8916.Assessment of Rivers in Mizoram using Length- Weight Relationship and Condition Factor of Fishes100Bibian K. Lalchhuanliana, Lalrinzuali, C. Lalfakawmi, Lalramliana17.C. Lalfakawmi, Lalramliana17.Estimating Density and Relative Abundance of Kalij Pheasant Lophura Leucomelanos in and around Lengteng Wildlife Sanctuary109H. Lalthanzara, Lalawmawia Sailo, G.S. Solanki, S.N. Ramanujam New Records, Monitoring the Threats and Conservation of Bats in the Lengteng Wildlife Sanctuary11819.19.C. Vanlalnghaka A Report on Soil Macrofungi in some Selected Sites of Mizoram Algal Diversity of Eastern Aizawl City142Zothanmawia, H. Lalruatsanga Fungal Diversity in Pachhunga University College Campus149Vanlalhruaii Ralte, P.C. Vanlalhluna Bamboo - A New Source of Microcrystalline Cellulose (MCC)182David C. Vanlalfakawma, Lalduhsanga Pachuau, Shri Kant Tripathi182	Beihrois Solo, Lahrantluanga, Lahramliana89Assessment of Rivers in Mizoram using Length- Weight Relationship and Condition Factor of Fishes100Bibian K. Lalchhamliana, Lahrinzuali, C. Lalfakaumi, Lahramliana100Bitmin K. Lalchamliana100Bitmin K. Lalchamliana100Bitmin K. Lalchamliana, Lahrinzuali, C. Lalfakaumi, Lahramliana100Bitmin K. Lalchamliana100Bitmin K. Lalchamliana100Bitmin K. Lalchamliana100Bitmin K. Lalbamliana100Bitmin K. Lalbamliana100C. Vanlalhghaka110A Report on Soil Macrofungi in some Selected Sites of Mizoram120Fungal Diversity of Eastern Aizawl City140Vanlalbruaii Ralte, P.C. Vanlalhluna Samboo - A New Source of Mit Kant Tripathi140David C. Vanlalfakauma, Lalduhsanga Pachuau, Shri Kant Tripathi140

Bamboo - A New Source of Microcrystalline Cellulose.

Chapter 14

BAMBOO - A NEW SOURCE OF MICROCRYSTALLINE CELLULOSE (MCC)

David C. Vanlalfakawma, Lalduhsanga Pachuau Shri Kant Tripathi

Microcrystalline cellulose (MCC) is a purified, partially de-polymerized form of cellulose occurring as a fine, free flowing crystalline powder. MCC has been used for many years in different industries like pharmaceuticals, cosmetics, plastics, food etc. In pharmaceutical industries it is widely used as binder and diluent for tablets and capsules preparations. MCC is one of few materials that have the ability to produce adequately hard, yet rapidly disintegrating tablets mainly due to the swelling of its particles and consequent decrease of the bonding forces holding them together. MCC is listed as generally recognized as safe (GRAS) by the FDA and material obtained from natural sources is safe, stable and physiologically inert (Rowe et al., 2006; Ejikeme, 2008). Cellulose is an abundant, naturally occurring polymer and several approaches have been applied to prepare MCC from different sources (Ohwoavworhua and Adelakun, 2005; Ohwoavworhua et al., 2007; Yang et al., 2008; Das et al., 2010; Jahan et al., 2011; Oliveira et al., 2011), all of them yielding different types of microfibrillar material. Difference in chemical composition and structural organization may be the reasons for obtaining different yields organizations and crystallinity of the MCC produced of a-centre produced (Ohwoavworhua and Adelakun, 2005). Polymers derived from plants especially those from non-food sources are attracting increased attention in recent years due to their environmental compatibility, unique physical properties and low cost. Bamboo, a naturally occurring composite material growing abundantly in tropical countries offers great potential as a green source for MCC preparation. It has also been reported that the cellulose and á-cellulose content of bamboo is comparable to that of softwoods and hardwoods which are the commercial sources for MCC (Han and Rowell, 1996). Moreover, compared to most wood species, bamboo is cheap and fast growing with comparable physicochemical properties which makes it an ideal alternative to these woods (Yang et al., 2008).

Bamboo, a naturally occurring composite material growing abundantly in tropical countries offers great potential as a green source for MCC preparation. It has been reported that the cellulose and á-cellulose content of bamboo is comparable to that of softwoods and hardwoods which are the commercial sources for MCC (Han and Rowell, 1996). Moreover, compared to most wood species, bamboo is cheap and fast growing with superior physicochemical properties which makes it an ideal alternative to these woods (Yang et al., 2008). The present study reports the preparation and evaluation of MCC produced from two dominant species of bamboo in the state of Mizoram, India which are Dendrocalamus longispathus and Melocanna baccifera, locally called as Rawnal and Mautak respectively.

D. longispathus, a large tufted sympodial bamboo, is one of the 15 commercially important species of bamboo growing in India that have been used in paper and pulp

183

Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications

Nanocellulose and Nanohydrogel Matrices

Biotechnological and Biomedical Applications

Edited by Mohammad Jawaid and Faruq Mohammad

WILEY-VCH

Editors

Dr. Mohammad Jawaid

Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia

Dr. Faruq Mohammad

Surfactant Research Chair Department of Chemistry College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia

Cover

Gettyimages: seraficus

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34172-6 ePDF ISBN: 978-3-527-80382-8 ePub ISBN: 978-3-527-80385-9 Mobi ISBN: 978-3-527-80384-2 oBook ISBN: 978-3-527-80383-5

Typesetting SPi Global Private Limited, Chennai, India Printing and Binding

Printed on acid-free paper

Editors are honored to dedicate this book to the King Saud University, the leading and knowledge-sharing university in the Kingdom of Saudi Arabia.

Contents

List of Contributors xvii

- 1 Application of Nanocellulose for Controlled Drug Delivery 1
- Lalduhsanga Pachuau
- 1.1 Introduction 1
- 1.2 Biodegradability, Cytotoxicity, and Cellular Internalization of Nanocellulose *3*
- 1.3 Nanocellulose in Nanoparticulate Drug Delivery 5
- 1.4 Nanocellulose in Microparticulate Drug Delivery 8
- 1.5 Nanocellulose in Tablet Formulations *10*
- 1.6 Aerogel Systems 10
- 1.7 Hydrogels 11
- 1.8 Nanocellulose in Transdermal Drug Delivery 13
- 1.9 Conclusion 14 References 14
- 2 Bacterial Cellulose and Polyester Hydrogel Matrices in Biotechnology and Biomedicine: Current Status and Future Prospects 21

Rajnikant Borkar, Sanghratna S. Waghmare, and Tanvir Arfin

- 2.1 Introduction 21
- 2.2 Chemical Structure of Cellulose 21
- 2.3 Types of Cellulose 21
- 2.4 Bacterial Cellulose 22
- 2.5 Chemical Structure of BC 22
- 2.6 History of BC 23
- 2.7 Biosynthesis of Bacterial Cellulose 23
- 2.8 Properties 23
- 2.8.1 Biocompatibility 25
- 2.8.1.1 In Vitro Biocompatibility 25
- 2.8.1.2 In Vivo Biocompatibility 26
- 2.8.2 Hemocompatibility 26
- 2.8.3 Mechanical Properties 27
- 2.8.4 Microporosity 27
- 2.8.5 Biodegradability 28

viii Contents

- 2.9 Present Status of BC 28
- 2.10 Applications 29
- 2.10.1 Drug Delivery 29
- 2.10.2 Antibacterial/Antimicrobial Studies 29
- 2.10.3 Biomedicine 30
- 2.10.4 Wound Dressing 30
- 2.10.5 Cardiovascular Implant 30
- 2.10.6 Cartilage Meniscus Implant 31
- 2.10.7 Bone Tissue Implant 31
- 2.10.8 Other Biomedical Applications 31
- 2.10.9 Artificial Cornea 32
- 2.10.10 Biotechnology 32
- 2.11 Future Prospects 33
- 2.12 Polyester Hydrogels 33
- 2.13 Chemical Structure of Hydrogels 33
- 2.14 Types of Hydrogels 34
- 2.15 Properties of Hydrogels 34
- 2.15.1 Swelling Properties 34
- 2.15.2 Biodegradability 35
- 2.15.3 Biocompatibility 36
- 2.16 Historical Background of Polyester Hydrogels 36
- 2.17 Recent Developments of Polyester Hydrogels 37
- 2.18 Applications of Polyester Hydrogels 38
- 2.18.1 Drug Delivery 38
- 2.18.2 Antibacterial/Antimicrobial Studies 38
- 2.18.3 Biomedicine 38
- 2.18.4 Biotechnology 39
- 2.18.5 Tissue Engineering 39
- 2.19 Future Prospects 39 References 40
- **3 Bacterial Nanocellulose Applications for Tissue Engineering** 47 Muhammed Lamin Sanyang, Naheed Saba, Mohammad Jawaid, Farua Mohammad, and Mohd Sapuan Salit
- 3.1 Introduction 47
- 3.2 Cellulose 47
- 3.3 Nanocellulose and Its Types 50
- 3.3.1 Cellulose Nanocrystals (CNCs) 50
- 3.3.2 Cellulose Nanofibrils (CNFs) 52
- 3.3.3 Bacterial Cellulose (BC) 52
- 3.4 Isolation and Preparation of Bacterial Cellulose 53
- 3.5 BC Properties for Tissue Engineering Applications 54
- 3.5.1 Mechanical Properties of BC 54
- 3.5.2 Surface Biochemistry Properties 55
- 3.5.3 Biological Properties 56
- 3.5.3.1 Biocompatibility 56
- 3.5.3.2 Biodegradability In Vivo 57

- 3.6 Tissue Engineering Applications 58
- 3.7 Conclusion and Future Research *61* References *62*
- 4 Cellulose-Based Nanohydrogels for Tissue Engineering Applications 67
 - Kalyani Prusty and Sarat K. Swain
- 4.1 Introduction 67
- 4.2 Preparation of Hydrogels/Cellulosic Hydrogels 69
- 4.3 Characterization of Hydrogels/Cellulosic Hydrogels 71
- 4.3.1 Fourier Transform Infrared Spectroscopy of Hydrogels/Cellulosic Hydrogels *71*
- 4.3.2 Scanning Electron Microscopy of Hydrogels/Cellulosic Hydrogels 72
- 4.3.3 Nuclear Magnetic Resonance of Hydrogels 73
- 4.3.4 X-ray Diffraction (XRD) of Hydrogels 75
- 4.3.5 Transmission Electron Microscopy (TEM) of Hydrogels 76
- 4.4 Properties of Hydrogels 76
- 4.4.1 Swelling Properties of Hydrogels 76
- 4.4.2 Thermal Properties of Hydrogels 78
- 4.4.3 Rheological Properties of Hydrogels 79
- 4.4.4 Mechanical Properties of Hydrogels 80
- 4.5 Cellulose-Based Nanohydrogels for Tissue Engineering Applications *81*
- 4.6 Concluding Remarks 84 Acknowledgment 85 References 85
- 5 Chitosan-Mediated Layer-by-Layer Assembling Approach for the Fabrication of Biomedical Probes and Advancement of Nanomedicine 91

Faruq Mohammad and Hamad A. Al-Lohedan

- 5.1 Introduction 91
- 5.2 Chitosan for Biofabrication 92
- 5.3 Derivatization of Chitosan 94
- 5.3.1 Derivatization by Direct Chemical Modification 94
- 5.3.2 Derivatization by Complex Formation 94
- 5.4 Chitosan-Mediated Biofabrication: Different Shapes and LBL Assembly 96
- 5.5 Chitosan-Mediated Assembly of Biomedical Probes and Devices *100*
- 5.5.1 Biosensors 100
- 5.5.2 Biopharmaceuticals 102
- 5.5.3 Tissue Engineering Appliances 104
- 5.5.4 Implant Materials 106
- 5.5.5 Diagnostic Probes 107
- 5.5.6 Surgical Aids 108

x Contents

- 5.6 Factors Influencing the Characteristics of Chitosan toward Biomedical Applications *109*
- 5.6.1 Degree of Deacetylation (DD) *110*
- 5.6.2 Degree of Quaternization (DQ) 111
- 5.6.3 Length and Type of Alkyl Chain *111*
- 5.6.4 Solubility 112
- 5.6.5 pH *113*
- 5.6.6 Molecular Weight (MW) 114
- 5.6.7 Substituent Charge 114
- 5.7 Summary and Conclusion 115 Acknowledgments 115 References 115

6 Hydrogels Based on Nanocellulose and Chitosane: Preparation, Characterization, and Properties 125

Meriem Fardioui, Abou el kacem Qaiss, and Rachid Bouhfid

- 6.1 Introduction 125
- 6.2 Polymeric Aerogels *126*
- 6.2.1 Sol–Gel Process 126
- 6.2.1.1 Starch Gel by the Chemical Cross-linking Technique 126
- 6.2.1.2 Alginate Hydrogel by Ionic Interaction Technique 127
- 6.2.1.3 κ-Carrageenan Hydrogel by Heating/Cooling Technique 127
- 6.2.1.4 Cellulose Hydrogel by the Hydrogen-Bonding Technique *129*
- 6.2.2 Gel Drying *129*
- 6.2.2.1 Ambient Pressure Drying 129
- 6.2.2.2 Freeze-Drying 129
- 6.2.2.3 Supercritical Drying 130
- 6.3 Chitosan and Functionalized Chitosan Hydrogels 131
- 6.3.1 Chitosan Biopolymer 131
- 6.3.2 Chemical and Physical Cross-linked Chitosan Hydrogel 131
- 6.3.2.1 Physical Gel 131
- 6.3.2.1.1 Ionically Cross-linked Chitosan Hydrogel 131
- 6.3.2.1.2 Polyelectrolyte Complexed Chitosan Hydrogels 132
- 6.3.2.2 Chemical Gels 132
- 6.3.3 Chitosan Hybrid Aerogels *133*
- 6.4 Biopolymeric Aerogels in Biomedical Applications *134* References *136*
- 7 Cellulose Nanocrystals and PEO/PET Hydrogel Material in Biotechnology and Biomedicine: Current Status and Future Prospects 139

Shoeb Athar, Rani Bushra, and Tanvir Arfin

- 7.1 Introduction 139
- 7.2 Cellulose Nanocrystals 140
- 7.2.1 Cellulose 140
- 7.2.2 Cellulose Nanocrystals (CNCs) 141

- 7.2.3 Why CNC? 142
- 7.2.3.1 Mechanical Properties 142
- 7.2.3.2 Surface Chemistry 142
- 7.2.3.3 Biocompatibility 142
- 7.2.3.4 In vivo Biodegradability 143
- 7.2.3.5 Toxicity 143
- 7.2.4 CNC in Biotechnology and Biomedicine 143
- 7.2.4.1 Biotechnology 143
- 7.2.4.1.1 Tissue Engineering 143
- 7.2.4.1.2 Enzyme or Protein Immobilization and Recognition 144
- 7.2.4.2 Biomedicine 146
- 7.2.4.2.1 Drug-Loaded System 146
- 7.2.4.2.2 Medical Implants 148
- 7.2.4.2.3 Cancer Targeting 150
- 7.2.4.2.4 Antimicrobial Nanomaterials 151
- 7.2.5 Future Prospects 153
- 7.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET) Hydrogel 155
- 7.3.1 Hydrogel 155
- 7.3.2 Classification 156
- 7.3.3 Polyethylene Oxide (PEO)/Polyethylene Terephthalate (PET) *156*
- 7.3.4 PEO/PET Hydrogel in Biotechnology and Biomedicine 157
- 7.3.4.1 Biotechnology 157
- 7.3.4.1.1 Tissue Engineering 157
- 7.3.4.1.2 Medical Devices and Biosensors 158
- 7.3.4.2 Biomedicine 159
- 7.2.4.2.1 Drug Delivery 159
- 7.3.4.2.2 Medical Implants 159
- 7.3.4.2.3 Wound Dressings 162
- 7.3.5 Future Prospects 162
- 7.4 Conclusion 163
 - References 164

8 Conducting Polymer Hydrogels: Synthesis, Properties, and Applications for Biosensors 175

Yu Zhao, Lijia Pan, Zhuanghao Yue, and Yi Shi

- 8.1 Introduction 175
- 8.2 Synthesis and Processing of CPHs 177
- 8.2.1 Conventional Synthetic Methods for CPHs 177
- 8.2.2 Recently Developed Preparation Routes for CPHs 179
- 8.3 CPHs for Electrochemical Biosensors 182
- 8.3.1 Conducting Polymer-Based Biosensors 184
- 8.3.2 Hydrogel-Based Biosensors 187
- 8.3.3 Ionically Cross-linked Conducting Polymer Hydrogels and Their Applications in Biosensors *189*

xii Contents

8.3.4	Doping Acid Cross-Linking as a Novel Method to Fabricate Conducting Polymer Hydrogels and Their Application
	in Biosensors 192
8 /	Conclusion 200
0.4	A cknowledgments 201
	Poforoncos 201
	References 201
9	Nanocellulose and Nanogels as Modern Drug
	Delivery Systems 209
	Misu Moscovici, Cristina Hlevca, Angela Casarica, and
	Ramona-Daniela Pavaloiu
9.1	Introduction 209
9.2	Nanoparticles as Drug Delivery Systems 210
9.2.1	State of the Art 210
9.2.2	Challenges 212
9.3	Nanocelluloses 212
9.3.1	Nanocellulose Structure, Preparation, and Properties 212
9.3.2	Nanocellulose as Drug Delivery Carrier 215
9.3.2.1	Nanocellulose Drug Formulations for Topical
	Administration 215
9.3.2.1.1	Topical Application of Nanocomposites with Local Effect 215
9.3.2.1.2	Nanocellulose in Transdermal Drug Delivery Systems 217
9.3.2.2	Nanocellulose Formulations for Internal (Into-the-Body)
	Administration 219
9.3.2.2.1	Nanocellulose in Tablet Compression and Coating 221
9.3.2.2.2	Nanocellulose in Implants for Local Therapy 222
9.3.2.2.3	Biocompatibility and Toxicology 223
9.4	Definition 222
9.4.1	Characteristics 222
9.4.2	Swelling 223
9422	Biocompatibility and Biodegradability 227
9423	Drug Loading 227
9424	Drug Release 229
9.4.3	Stimuli-Responsive Nanogels 229
9.4.4	Targetability 232
9.4.5	Toxicity 234
9.4.6	Easy Synthesis of Nanogels 234
9.4.7	Nanogel Applications in Drug Delivery 236
9.4.7.1	Nanogel Delivery Systems for Cancer Therapy 236
9.4.7.1.1	Nanogels Carriers of More Than a Single Drug 240
9.4.7.2	Nanogels for Drug Delivery across Biological Barriers 242
9.4.7.3	Nanogels in Vaccine Delivery 247
9.4.7.4	Nanogels in Anti-inflammatory Drug Delivery 248
9.4.7.5	Nanogels in Treatment of Autoimmune Diseases 249
9.5	Conclusions and Outlook 250
	References 254

10Recent Advances on Inhibitors of Apoptosis Proteins (IAP) Particularly
with Reference to Patents271

Riyaz Syed, Prema L. Mallipeddi, Syed Mohammed Ali Hussaini, Rahul V. Patel, A. Prasanth Saraswati, and Ahmed Kamal

- 10.1 Introduction 271
- 10.1.1 Inhibitor of Apoptosis Proteins 271
- 10.1.2 IAPs and Cancer 273
- 10.1.2.1 XIAP 273
- 10.1.2.2 cIAPs 273
- 10.1.3 Mechanism of Action and Development of Smac Mimetics 273
- 10.1.3.1 Prudence Section 274
- 10.2 Patent Assessments 275
- 10.2.1 Fused Pyrrolidine as IAP Inhibitors 275
- 10.2.2 Fused Pyrazinone Derivatives 276
- 10.2.3 Indoles and Azaindoles 277
- 10.2.4 Dimeric Indoles 279
- 10.3 Other Heterocyclics as IAPs 279
- 10.3.1 Diazepine and Diazocine Derivatives as IAP Antagonists 281
- 10.3.2 Triazole-Containing Macrocycles as IAPs 281
- 10.3.3 Isoquinoline-Based IAP Antagonists 281
- 10.3.4 Dimeric and Pseudodimeric Peptidomimetics as IAPs 284
- 10.3.5 Pyrrolidine-Containing IAP Antagonists 285
- 10.3.6 Miscellaneous Structures as IAPs 286
- 10.4 Conclusion and Perspectives 288 Acknowledgments 290 References 290
- 11 Nanohydrogels: History, Development, and Applications in Drug Delivery 297

Muhammad Akram and Rafaqat Hussain

- 11.1 Introduction 297
- 11.2 History 297
- 11.2.1 First-Generation Hydrogels 298
- 11.2.2 Second-Generation Hydrogels 298
- 11.2.2.1 pH-Sensitive Hydrogels 298
- 11.2.2.2 Temperature-Responsive Hydrogels 300
- 11.2.3 Third-Generation Hydrogels 300
- 11.3 Classification of Hydrogels Based on the Type of Cross-Link Junctions *301*
- 11.3.1 Physical Network-Based Hydrogels 302
- 11.3.2 Chemical Network-Based Hydrogels 303
- 11.3.3 Hydrogels Based on Ionic Interaction 304
- 11.3.4 Enzyme-Based Cross-Linking Hydrogels 304
- 11.3.5 Photosensitive Functional Group-Based Cross-Linked Hydrogels 305
- 11.4 Classification of Hydrogels Based on Properties *305*
- 11.5 Classification of Interpenetrating Network Hydrogels 307

- 11.5.1 Homopolymeric Hydrogels 307
- 11.5.2 Copolymeric Hydrogel 307
- 11.5.3 Semi-interpenetrating Hydrogels 308
- 11.5.4 Interpenetrating Hydrogels 308
- 11.6 Classification Based on Source *309*
- 11.7 Properties of Hydrogels 309
- 11.7.1 Swelling Properties 309
- 11.7.2 Elasticity of Hydrogels 310
- 11.7.3 Porosity and Permeation of Hydrogels 311
- 11.7.4 Mechanical Properties of Hydrogels 312
- 11.7.5 Biocompatibility of Hydrogels 312
- 11.7.6 Inhomogeneity of Hydrogels 312
- 11.8 Nanohydrogels and Their Applications 313
- 11.8.1 Polysaccharide-Based Nanohydrogels 314
- 11.8.1.1 Hyaluronic Acid-Based Nanohydrogels in Drug Delivery 315
- 11.8.1.2 Chitosan-Based Nanohydrogels in Drug Delivery 316
- 11.8.1.3 Alginate-Based Nanohydrogels in Drug Delivery 317
- 11.8.1.4 Pectin-Based Nanohydrogels in Drug Delivery 317
- 11.8.1.5 Dextran-Based Nanohydrogels in Drug Delivery 317
- 11.8.1.6 Cellulose-Based Nanohydrogels in Drug Delivery 317
- 11.9 Conclusion 319 References 319
- 12 Nanofibrillated Cellulose and Copoly(amino acid) Hydrogel Matrices in Biotechnology and Biomedicine 331 Azhar U. Khan, Nazia Malik, and Tanvir Arfin
- 12.1 History and Background of Celluloses 331
- 12.2 Structure of Cellulose 331
- 12.2.1 Characterization of Cellulose 332
- 12.2.2 Crystalline and Amorphous Regions 332
- 12.3 Nanocelluloses 333
- 12.3.1 Nanofibrillar Cellulose (NFC) 333
- 12.3.2 Production of NFC 334
- 12.3.2.1 Surface Modification of Nanofibrillated Cellulose 334
- 12.3.2.2 Coupling Agent 334
- 12.3.2.3 TEMPO-Mediated Oxidation Pretreatment 335
- 12.3.2.4 Other Chemical Methods 335
- 12.3.3 Biomedical Applications of NFC 336
- 12.3.3.1 Immunoassays and Diagnostics 336
- 12.3.3.2 Three-Dimensional (3D) Cell Cultures 337
- 12.3.3.3 Replacement of the Nucleus Pulposus 337
- 12.3.3.4 Controlled Drug Delivery 338
- 12.3.3.5 Wound Healing 338
- 12.3.4 Biotechnology Applications of NFC 339
- 12.3.4.1 Genetically Engineered Fusion 339
- 12.3.4.2 Immobilization–Stabilization 339
- 12.3.4.3 Cartilage Tissue Engineering 340

- 12.4 Hydrogels 340
- 12.4.1 Role of Swelling in Hydrogels 340
- 12.4.1.1 Sol-Gel Transition in Hydrogels 341
- 12.4.1.2 Classification of Hydrogel Products 341
- 12.4.1.3 Hydrogel Technical Features 341
- 12.4.2 Preparation of Poly(amino acids) 342
- 12.4.3 Biomedical Application of Hydrogels 344
- 12.4.3.1 Treatment of Hepatoma 344
- 12.4.3.2 Drug Delivery 345
- 12.4.3.3 Anticancer Drug 345
- 12.4.4 Biotechnology Applications of Hydrogels 346
- 12.4.4.1 Genetic Engineering 346
- 12.4.4.2 Amyloidogenicity Code 346
- 12.4.4.3 Antibodies 346
- 12.5 Conclusion 347 References 347

Index 353

List of Contributors

Muhammad Akram

Department of Chemistry Government Degree College Raiwind Pakistan

Syed Mohammed Ali Hussaini

Medicinal Chemistry and Pharmacology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 Telangana India

Hamad A. Al-Lohedan

King Saud University Surfactant Research Chair College of Science Department of Chemistry P.O. Box 2455 Riyadh 11451 Saudi Arabia

Tanvir Arfin

Environmental Materials Division CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur 440020 India

Shoeb Athar

Environmental Materials Division CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur 440020 India

Rajnikant Borkar

Environmental Materials Division CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur 440020 India

Rachid Bouhfid

Laboratory of Polymer Processing Moroccan Foundation for Advanced Science Innovation and Research (MAScIR) Rabat Morocco

Rani Bushra

Aligarh Muslim University Analytical Research Laboratory Department of Chemistry Aligarh 202002 India

Angela Casarica

National Institute for Chemical Pharmaceutical R&D Calea Vitan 112, Sector 3 031299 Bucharest Romania

Meriem Fardioui

Laboratory of Polymer Processing Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Rabat Morocco

Cristina Hlevca

National Institute for Chemical Pharmaceutical R&D Calea Vitan 112, Sector 3 031299 Bucharest Romania

Rafaqat Hussain

Department of Physics COMSATS Institute of Information Technology Islamabad Pakistan

Mohammad Jawaid

Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia Serdang 43400 Selangor Malaysia

Ahmed Kamal

Medicinal Chemistry and Pharmacology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 Telangana India

Azhar U. Khan

Jaipur National University School of Basic Science Department of Chemistry Jagatpura 302017 India

Nazia Malik

Aligarh Muslim University Department of Chemistry Aligarh 202002 India

Prema L. Mallipeddi

University of Houston Department of Biology and Biochemistry Science & Research Building 2 3455 Cullen Blvd #342 Houston, TX 77204 USA

Faruq Mohammad

King Saud University Surfactant Research Chair College of Science Department of Chemistry P.O. Box 2455 Riyadh 11451 Saudi Arabia

Misu Moscovici

National Institute for Chemical Pharmaceutical R&D Calea Vitan 112, Sector 3 031299 Bucharest Romania

Lalduhsanga Pachuau

Assam University Department of Pharmaceutical Sciences Silchar Assam 788011 India

Rahul V. Patel

Department of Food Science and Biotechnology Dongguk University-Seoul Ilsandong-gu, Goyang-si Gyeonggi-do 410-820 Republic of Korea

Ramona-Daniela Pavaloiu

National Institute for Chemical Pharmaceutical R&D Calea Vitan 112, Sector 3 031299 Bucharest Romania

Kalyani Prusty

Veer Surendra Sai University of Technology Department of Chemistry Burla Sambalpur Odisha 768018 India

Abou el kacem Qaiss

Laboratory of Polymer Processing Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR) Rabat Morocco

Naheed Saba

Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia Serdang 43400 Selangor Malaysia

Muhammed Lamin Sanyang

Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia Serdang 43400 Selangor Malaysia

Mohd Sapuan Salit

Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia Serdang 43400 Selangor Malaysia

A. Prasanth Saraswati

Department of Medicinal Chemistry National Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 Telangana India

Sarat K. Swain

Veer Surendra Sai University of Technology Department of Chemistry Burla Sambalpur, Odisha 768018 India **xx** List of Contributors

Riyaz Syed

Medicinal Chemistry and Pharmacology CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 Telangana India

Sangharatna S. Waghmare

Environmental Materials Division CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur 440020 India

Yu Zhao

Nanjing University School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 China

Application of Nanocellulose for Controlled Drug Delivery

Lalduhsanga Pachuau

1

Assam University, Department of Pharmaceutical Sciences, Silchar, Assam 788011, India

1.1 Introduction

The therapeutic effectiveness of a pharmacological treatment depends upon the availability of the active drug at the site of action in a concentration that exceeds the minimum effective concentration. However, more often than not, this ideal condition for therapeutic activity is not met due to several inherent pharmaceutical and pharmacological properties of the drug. In fact, it has been generally recognized that for many disease states, there are substantially good numbers of therapeutically effective compounds available on offer [1]. The obvious cause of therapeutic failure with several of these otherwise promising compounds when used in a clinical setting is that they are unable to reach the site of action. The potential reasons for the poor bioavailability of the drugs at the required site include (i) poor water solubility, (ii) poor permeability across the biological membranes, and (iii) rapid metabolism and clearance from the body [2]. The aim of controlled drug delivery is, therefore, to overcome these limitations to effective drug therapy by localizing drug release at the site of action, reducing the dose required, and providing constant drug release. As a result, controlled drug delivery systems offer several advantages over conventional system in reducing the toxicity, enhancing the activity, and ultimately improving the patient convenience and compliance [3]. Several dosage forms, conventional and nonconventional, have been developed and continuously improved over the years to achieve better drug therapy. One of the newer approaches for improved drug delivery that received enormous interest in recent times is nanomedicine. The applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems have recently been referred to as nanomedicine by the National Institutes of Health [4]. Drug delivery is the dominant area of nanomedicine research as it accounts for 76% and 59% of all recent scientific papers and patents on nanomedicine, respectively [5].

Polymers are the backbone of controlled drug delivery systems. Over the past few decades, there has been considerable interest in the development of effective drug delivery devices based on biodegradable nanoparticles [6]. Both natural and

| 1

2 1 Application of Nanocellulose for Controlled Drug Delivery

synthetic polymers with a wide range of safety and functionalities are extensively investigated in designing controlled delivery systems. The investigations into the novel synthetic and fabrication methods, and mathematical models to study the mechanisms of controlled drug release, have resulted in the ability to create tunable polymeric nanoparticulate drug delivery systems that are capable of taking care of the spatial and temporal aspects of controlled drug delivery [7]. Due to their cytocompatibility, biodegradability, and availability of reactive sites amenable for ligand conjugation, cross-linking, and other modifications, natural polymers have been successfully used in controlled drug delivery [8, 9]. Plant-derived nanostructures such as starch, cellulose, zeins, legume proteins, and others are particularly attractive sources as they are cost effective, sustainable, and renewable with excellent tunable properties [10].

Nanocellulose obtained from cellulose-the most abundant biopolymer on Earth – is an emerging renewable polymeric nanomaterial that holds promise in many different applications including food and pharmaceuticals [11, 12]. Due to its excellent biocompatibility, biodegradability, and low ecological toxicity risk and low cytotoxicity to a range of animal and human cell types [13], nanocellulose is currently a subject of interdisciplinary material of interest. Excellent discussions on the chemistry, preparation, and the general properties of nanocellulose are available from several literatures [12, 14-17]. Nanocellulose can be obtained from a wide variety of sources and their properties were also found to depend on the source from which they are prepared (Figure 1.1). Broadly, they are divided into three categories such as bacterial cellulose (BC), cellulose nanocrystals (CNCs) (also called as cellulose nanowhiskers or nanocrystalline cellulose), and cellulose nanofibrils (CNFs) depending on their source and methods of production [18]. Those obtained from acid or enzyme hydrolysis are commonly called as CNC, while those obtained through mechanical treatments are termed as cellulose nanofibrils (CNFs). Bacterial nanocellulose is another highly crystalline form

Figure 1.1 TEM images of (a) bacterial HCI, (b) bacterial sulfate, (c) tunicate sulfate, (d) wood enzymatic, (e) wood mechanically refined, (f) wood sulfate, and (g) wood TEMPO. (Sacui *et al.* 2014 [17]. Reproduced with permission of American Chemical Society.)

of cellulose, which is obtained mainly from *Gluconacetobacter xylinus* [19]. The presence of free reactive hydroxyl group exposed at the surface and its nanometer size dimension rendered nanocellulose a good candidate for imparting different functionalities through chemical derivatization. Since cellulose is stable to a wide range of temperatures, it can also be subjected to heat sterilization methods, which is often required in biomedical applications [20]. All the different categories of nanocelluloses have been widely investigated in drug delivery systems. Also, since BC can be purified using sodium hydroxide to the US Food and Drug Administration (*FDA*) acceptable range of endotoxin values for implants, that is, <20 endotoxin units/device, they are also potentially safe for use in intravenous applications [21].

Different cellulose derivatives including ethylcellulose, methylcellulose, carboxymethyl cellulose, and hydroxypropylmethyl cellulose are indispensable in drug delivery and pharmaceutical technology. They are listed as generally recognized as safe (*GRAS*) by the FDA and are widely used in the preparation of drug products [22]. Even though it was way back in 1949 that Ranby [23] successfully produced a micellar cellulose solution, it is only in the last few years that the potential of nanocellulose in drug delivery has been realized and research into this material has began to pick up. Current research into the application of nanocellulose in drug delivery includes formulation of nanoparticles, microparticles, tablets, aerogels, hydrogels, and transdermal drug delivery systems. This chapter will describe the current and recent research activities in the application of nanocellulose in the preparation of different dosage forms.

1.2 Biodegradability, Cytotoxicity, and Cellular Internalization of Nanocellulose

Choosing a suitable polymer that is biocompatible, able to encapsulate, control, and target the release of the drug and yet biodegradable is highly critical for the successful formulation of nanomedicine. The ability of nanomedicines to target specific sites depends upon the particle size, surface charge, surface modification, and hydrophobicity, which in turn determine their interaction with the cell membrane and their penetration across the physiological drug barriers [24]. Therefore, it is important that the biodegradability, cytotoxicity to a range of human cell types, and the mechanism of cellular uptake of nanocellulose-based delivery systems are investigated (Table 1.1). When investigated against nine different cell lines such as HBMEC, bEnd.3, RAW 264.7, MCF-10A, MDA-MB-231, MDA-MB-468, KB, PC-3, and C6 following the MTT and LDH assay methods, the filamentous CNCs showed no cytotoxic effects against any of these cell lines in the concentration range $(0-50 \,\mu \text{g ml}^{-1})$ during the exposure time (48 h) [25, 26]. Low nonspecific cellular uptake was observed when cellular uptake was evaluated through fluorescein-5'-isothiocyanate labeling, which indicates that CNCs are good candidates for nano drug delivery applications. In another study, the cellular uptake of negatively charged fluorescein isothiocyanate (FITC)-labeled CNCs was evaluated and compared against the positively charged rhodamine B isothiocyanate-labeled CNCs (RBITC) in human embryonic kidney 293 (HEK 293) and Spodoptera frugiperda

1 Application of Nanocellulose for Controlled Drug Delivery

Formulation type	Release mechanism	Cells used	Cellular uptake
Nanocrystals	_	HBMEC, bEnd.3, RAW 264.7, MCF-10A, MDA- MB-231, MDA-MB-468, KB, PC-3, and C6	Low nonspecific cellular uptake [25, 26]
Negatively charged fluorescein isothiocyanate-labeled CNCs (FITC)	_	HEK 293 and <i>Sf</i> 9	No significant uptake [27]
Positively charged rhodamine B isothiocyanate-labeled CNCs (RBITC)	_	HEK 293 and <i>Sf</i> 9	High uptake, due to favorable electrostatic interaction between cationic RBITC and anionic cellular membrane [27]
Folic acid-conjugated CNCs	_	DBTRG-05MG, H4, and C6	Caveolae-mediated endocytosis and clathrin-mediated endocytosis in H4 cells [28]
Acid-hydrolyzed CNCs	Slow release over 4 days	KU-7 bladder cancer cells	Evidence of cellular uptake may be due to partitioning following cell binding [29]
Curcumin–cyclodextrin/ CNC nanocomplex	Slow release	Colorectal and prostatic cancer cell lines (PC-3, DU145, and HT-29)	Endocytosis [30]
Polyphosphoester- grafted CNC	pH-Dependent, slow and controlled release	HeLa cells and L929 cells	Endocytosis [31]

Table 1.1 Cellular uptake mechanisms of different formulations.

(*Sf9*) cells [27]. This study reports that the positively charged *CNC–RBITC* conjugate was uptaken by the cells without affecting the integrity of the cell membrane and there was no noticeable cytotoxic effect observed (Figure 1.2), whereas the negatively charged *CNC–FITC* conjugate resulted in no significant internalization at physiological pH but the effector cells were surrounded by CNC–FITC, leading to eventual cell rupture showing the importance of the surface charge of CNC for bioimaging and drug delivery.

Due to the availability of reactive groups on the surface of nanocelluloses, they are often functionalized with functional groups to improve their physicochemical and functional properties. In recent study, nanofribrillated cellulose (NFC) was surface-functionalized with anionic and cationic groups, and the effect of this functionalization on the monocyte/macrophage (MM) reaction was investigated along with the unmodified form to have a better understanding on the

1.3 Nanocellulose in Nanoparticulate Drug Delivery 5

Figure 1.2 Mixed-field and fluorescence microscopy images comparing the uptake of CNC–FITC (upper) with CNC–RBITC (lower) by *Sf*9 cells at (a) pH 5 and (b) pH 6.5. Cells were incubated with CNC–FITC or CNC–RBITC during 3 h at respective pH and then fixed for confocal microscope measurement. (Mahmoud *et al.* 2010 [27]. Reproduced with permission of American Chemical Society.)

effect of physicochemical properties of nanocellulose on its interactions with biological systems [32]. Cell response was evaluated in terms of cell adhesion, morphology, and secretion of TNF- α , IL-10, and IL-1ra after THP-1 monocytes were cultured on the surface of the films for 24h in the presence and absence of lipopolysaccharide. A pro-inflammatory phenotype was found to activate the anionic carboxymethylated NFC films, while the unmodified forms promote a mild activation and cationic hydroxypropyl-trimethylammonium groups does not resulted in the activation of MMs at all. This study significantly enhances our understanding on the importance of surface charges on the nanocellulose derivatives when they are intended to be used for biomedical applications (Figure 1.3).

With the advent of nanotechnology and the availability of a multitude of nanomaterials synthesized from innumerable numbers of materials, concerns over an ecotoxicological risks associated with their exposure and biodegradability loom large. Toxicity test of CNCs with rainbow trout hepatocytes and nine aquatic species showed that CNCs exhibit a low toxicity potential and environmental risk [33]. When the biodegradability of CNC in aqueous environment was also studied as per the OECD standard and compared with other nanomaterials, CNCs and starch nanoparticles were found to biodegrade at similar levels but faster than their counterparts such as fullerenes and functionalized carbon nanotubes, which was attributed to their higher surface area [34].

1.3 Nanocellulose in Nanoparticulate Drug Delivery

Drug delivery research over the years has become highly interdisciplinary. Researchers from diverse fields such as biomedical engineering, pharmaceutical sciences, and life sciences investigate into a plethora of research questions pertaining to their background. One of the interesting findings, as a result, is the effect of 6 1 Application of Nanocellulose for Controlled Drug Delivery

Figure 1.3 Representative SEM micrographs at ~1000 times magnification of THP-1 monocytes cultured for 24 h on u-NFC, a-NFC, c-NFC, and TMX in the presence (b) and absence of LPS (a). Mainly rounded single cells are found on c-NFC and TMX. Cells on a-NFC tended to form clusters and presented many short filopodia, while u-NFC presented both single cells and small cell clusters, with few and short filopodia. This figure represents the importance of surface charge on the CNCs. (Hua *et al.* 2015 [32]. Reproduced with permission of American Chemical Society.)

nanoparticles' geometry on the effectiveness of the delivery system. When polymeric micelles of flexible filament types were compared with the spherical types, the filament types exhibit 10 times longer circulation time and are also taken up more readily by cells as a result of their extended flow [35]. The anticancer drug paclitaxel was effectively delivered, which resulted in the shrinking of the human-derived tumors in mouse model. Other elongated novel carriers such as elongated liposomes, carbon nanotubes, and others are also reported to exhibit much longer clearance time when compared with the spherical systems [36]. These findings coupled with the outstanding surface area-to-volume ratio of filamentous nanocelluloses have attracted researchers to develop a novel nanoparticulate drug delivery system based on nanocellulose. Folic acid-conjugated CNCs were synthesized for cellular uptake and folate receptor-positive cancer targeting of chemotherapeutics [28]. When tested on such folate receptor-positive human (DBTRG-05MG, H4) and rat (C6) brain tumor cells, the cellular binding and uptake of the conjugate were 1452, 975, and 46 times higher in the DBTRG-05MG, H4, and C6 cells than the non-conjugated cellulose nanoparticles, respectively. The uptake mechanism of the conjugate by DBTRG-05MG and C6 cells was also found to be primarily through caveolae-mediated endocytosis and through clathrin-mediated endocytosis in H4 cells.

One of the earliest reports on the application of acid-hydrolyzed CNCs was published in 2011 [29]. The study reported the binding of the water-soluble, ionizable drugs tetracycline and doxorubicin to the CNCs, which resulted in the rapid release of drugs over a period of 1 day. When the CNCs were treated with cetyltrimethylammonium bromide, a significant increase in zeta potential was observed, which bound significant quantities of hydrophobic drugs such as docetaxel, paclitaxel, and etoposide. The bound drugs were shown to be released over a 2-day period in a controlled manner, and an evidence of cellular uptake of the nanocomplex by the KU-7 bladder cancer cells was also observed. A polyelectrolyte-macroion complex between anionic CNCs and a cationic chitosan was also prepared for controlled drug delivery (Figure 1.4), which resulted in nearly spherical nanoparticles with positive charge at amino/sulfate group molar ratios >1 and nonspherical nanoparticles with negative charge when particles were formed at the ratios <1 [37]. Another ionic nanocomplex prepared between cationic β -cyclodextrin (β -CD) and the CNCs was also used to encapsulate curcumin for controlled drug delivery. The CNCs were obtained by sulfuric acid hydrolysis, while cationic β -CDs were obtained by the reaction of glycidyltrimethylammonium chloride with β -CD in alkaline aqueous medium. When tested in vitro, the nanocomplex was shown to exhibit an antiproliferative effect on colorectal and prostatic cancer cell lines where the IC₅₀ was found to be lower than that of curcumin alone [30].

A novel polyphosphoester-grafted CNC was developed by the "grafting onto" process through "click" reaction, which possessed a negatively charged surface suitable for binding doxorubicin and delivers it to the HeLa cells. The system showed a good biocompatibility to both HeLa cells and L929 cells, internalized through endocytosis, and exhibited an anticancer activity against HeLa cells where the drug released was caused by the disruption of the electrostatic interaction in the acidic environment inside the tumor cells [31]. The novel modified

1 Application of Nanocellulose for Controlled Drug Delivery

Figure 1.4 FE-SEM images of PMC particles formed by the addition of a 0.001% (w/v) chitosan solution to a 0.02% (w/v) CNC suspension at reaction mixture N/S ratios of (a) 0.33, (b) 0.66, (c) 0.99, (d) 1.33, and (e) 1.66. Scale bar: $3 \mu m$ (applies to all images). (Wang and Roman 2011 [37]. Reproduced with permission of American Chemical Society.)

CNC was found to show a good pH response, making it a promising delivery vehicle for anticancer drugs.

1.4 Nanocellulose in Microparticulate Drug Delivery

The importance of encapsulating drugs, food actives, flavors, or even cell for improved performance and preservation has been well appreciated across different scientific fields. A wide range of natural and synthetic polymeric materials are available for encapsulation, the choice of which mainly rested upon the desired performance of the end products. Nanocellulose is an emerging natural polymer that has received considerable interest in recent years as the encapsulating polymer for drug delivery. It has also been widely investigated to enhance the

8

mechanical properties and influence drug delivery behavior of microcapsules prepared with other natural polymers. A study was conducted to evaluate the influence of three polysaccharide nanocrystals (*PNs*) such as CNCs, starch nanocrystals, and chitin whiskers on the mechanical and drug release properties of sodium alginate microspheres [38]. All the three PNs resulted in improved mechanical properties and pH sensitivity of the microspheres. All the PNs were found to restrict the motion of the sodium alginate polymer chains and inhibit diffusion of the drug, resulting in the slow dissolution of theophylline from the microspheres, and diffusion transport was found to be the drug release mechanism from the systems.

An electrostatic interaction between negatively charged CNCs and positively charged chitosan has also been employed to prepare layer-by-layer assembled thin film and microcapsules for controlled drug delivery [39]. Both the water-soluble anticancer drug doxorubicin hydrochloride and lipophilic curcumin were successfully incorporated into the system for sustained drug delivery. Self-assembled nanocellulose and indomethacin structures were prepared for sustained release of the encapsulated drug [40]. A high encapsulation efficiency of up to 97% of the water-insoluble drug indomethacin was achieved with drug release sustained over 30 days. Drug release was found to take place through diffusion, and fitting the drug release curves into various equations to determine the drug release mechanism showed that first-order model was the best fit.

Matrix-type microparticles were prepared by spray drying of nanofibrillar cellulose for sustained delivery of different drugs such as indomethacin, nadolol, atenolol, metoprolol tartrate, verapamil hydrochloride, and ibuprofen [41]. Spherical particles of diameters around 5 µm were obtained by encapsulating the active drug mainly in the amorphous form. Final drug loading was guite low, up to 15.1% in indomethacin and 8.2% in verapamil hydrochloride. This low drug loading was attributed to the result of the low affinity between the drug and the cellulose fibers. When drug release from the microparticles was assessed by dissolution study, it was observed that after initial burst release, drug release was extremely slow taking over a 2-month period as a result of the tight binding between the drugs and the cellulose fibers. Drugs were released by diffusion through the matrix system, and when dissolution curves were fitted into different equations, different drugs were found to follow different release kinetics, mainly attributed to the inherent properties of the drugs. Microparticles based on BC were also prepared by spray-drying method where the particles obtained were semispherical in shape [42]. The resulting particles demonstrate good redispersibility, with better water retention capacity and higher thermal stability than microcrystalline cellulose (MCC). Beads tailored from dissolved cellulose to release the encapsulated drugs in a controlled manner were also showed to be a promising controlled delivery system [43].

In another application in microencapsulation, nisin-loaded beads prepared with alginate–*CNC* were evaluated against its ability to inhibit growth of *Listeria monocytogenes* in ready to-eat (*RTE*) ham [44]. Nisin-loaded beads were able to prevent the growth of the microorganism for at least 28 days.

1.5 Nanocellulose in Tablet Formulations

Cellulose and its derivatives in different forms have been indispensable components in the preparation of tablets for a long time. Cellulose derivatives such as MCC, hydroxypropyl methylcellulose, ethylcellulose, carboxymethylcellulose, and others are extensively used in conventional as well as controlled-release tablet formulations. With the practical edge provided by nanocellulose in numerous functional properties being realized and appreciated, a few investigations have explored its potential as functional excipients in tablet formulations. The potential of spray-dried cellulose nanofibers as novel tablet excipients was evaluated and compared against two commercial MCC, Avicel PH-101 and Avicel PH-102, which are the two most commonly used direct compression excipients [45]. Cellulose nanofibers were found to possess excellent compressibility and were amendable to both wet granulation and direct compression methods of tablet preparations. Cellulose nanofibers prepared through direct compression method showed faster disintegration and drug release showing its potential as direct compression excipients. Freeze-dried CNC prepared from water sugarcane bagasse was also shown to enhance the dissolution of diltiazem hydrochloride tablets prepared with the nanocellulose [46].

Disintegrants are added into tablet formulations to ensure that the tablet breaks up into fragments in the GI fluid tract to facilitate dissolution, which in turn results in enhanced bioavailability [47, 48]. Nanocrystalline cellulose was reported to exhibit two potentially advantageous properties when used as disintegrant in calcium carbonate tablet preparation [49]. First is the reduced disintegration time and second is the increased hardness, which was observed with increase in the nanocrystalline cellulose concentration in the tablet formulation, confirming its potential disintegrant property. Along with pectin and sodium alginate, CNCs are also used in the successful probiotic tablet preparation [50].

1.6 Aerogel Systems

Aerogels are lightweight materials with outstanding surface area and open porosity, suitable for high loading of active compounds [51]. They are nanoporous systems obtained from the wet gels or hydrogels through a suitable drying technology that keeps the porous texture of the wet material intact. Due to their weblike structure, high porosity, and high surface reactivity, aerogels prepared from nanocelluloses possess a high mechanical flexibility and ductility with ability for water uptake, which makes them an excellent candidate for the removal of dye pollutants, thermal insulation materials, and drug delivery system [52]. As a result, different types of nanocelluloses, due to their excellent and suitable properties, have become the subject of keen interest in the preparation of aerogels for drug delivery.

Freeze-drying method was applied to prepare highly porous aerogels from nanofibrillar cellulose obtained from four different sources and compared with MCC as nanoparticulate oral drug delivery systems [53]. Release of the beclomethasone dipropionate drug nanoparticle integrated into the aerogel system was found to be quick and immediate for red pepper-based aerogel and MCC, while BC, quince seed (QC), and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. A controlled release of the drug was achieved, which was modulated by the interactions between the drug nanoparticles and the cellulose matrix, making it a promising carrier for controlled drug delivery.

Three different systems such as hydrogels, aerogels, and films of CNFs were prepared and functionalized with silver nanoparticles through the interaction of the negatively charged CNFs, obtained by TEMPO oxidation method and the positively charged silver, Ag^+ [54]. A stiff hydrogel was formed after the reaction, which was free-dried to obtain the aerogel with a potential for drug delivery applications.

1.7 Hydrogels

Hydrogels are prepared by cross-linking of polymer chains through the interactions that may be of ionic, physical, or covalent, having the ability to absorb water [55]. Hydrogels swell in water but do not dissolve in it. Due to their ability to display sol–gel transitions that can be induced by a slight changes in the environmental conditions such as temperature, pH, ionic strength, phase separation, wavelength of light, crystallinity, and others, smart polymeric hydrogels are extensively used in biomedical fields such as in the development of controlled-release drug delivery systems, tissue engineering, and regenerative medicine [56]. Several smart hydrogels such as injectable hydrogels [57], shape-memory bacterial nanocellulose hydrogels [58], supramolecular hydrogels [59], double-membrane hydrogels [60], temperature-sensitive hydrogels [61], and many others with potential for drug delivery have been developed, which were based on nanocellulose.

PNs from natural sources such as CNCs, chitin whiskers, and starch nanocrystals have been shown to impart pH sensitivity to sodium alginate microparticle hydrogels, thereby exhibiting a pH-dependent drug release [38]. About 12h of drug release was achieved, and the drug was released through diffusional transport mechanism. A biocompatible double-membrane hydrogel was also developed based on CNCs and sodium alginate for controlled drug delivery of two drugs [60]. Two drugs, ceftazidime hydrate and human epidermal growth factor, were incorporated into the first and second membranes, respectively (Figure 1.5). Controlled release lasting form more than 6 days was achieved for the incorporated drugs. A supramolecular hydrogel prepared through the *in situ* host–guest inclusion complex between modified CNCs and β-CD was prepared with pluronic polymer for drug delivery [59]. Doxorubicin hydrochloride was taken as a model drug for studying the drug release behavior. Drug release was extended over 7 days, and when the release curves were fitted into Ritger-Peppas equation, a special drug release mechanism was observed. The study showed that with a neat pluronic/ α -CD-Dox hydrogel system, drug release follows Fickian diffusion, but the in situ CNCs/CD-pluronic-Dox hydrogels were found to exhibit an anomalous transport release mechanism.

Hydrophilic and high biocompatible bacterial nanocellulose was investigated for its potential in controlled delivery taking serum albumin as a model drug [62]. The model drug was loaded into both never-dried bacterial nanocellulose hydrogel and the free-dried, re-swellable sample. Both the samples showed controllable

12 1 Application of Nanocellulose for Controlled Drug Delivery

Figure 1.5 Preparation routine of single-membrane and double-membrane microsphere hydrogels; optical microscope images of (a) the SA/CCNC single-membrane microsphere hydrogel and (b) the SA/CCNC-1h double-membrane microsphere hydrogel. (Lin *et al.* 2016 [60]. Reproduced with permission of American Chemical Society.)

loading and release of the drug, and when drug release was fitted into Ritger– Peppas equation, an overlay of diffusion and swelling controlled processes was observed. The same group had also evaluated the potential of shape-memory three-dimensional (3D) bacterial nanocellulose structures for drug delivery [58]. The re-swelling behavior was found to be influenced by the tested additives such as magnesium chloride, glucose, sucrose, sorbitol, trehalose, lactose, mannitol, polyethylene glycol, and sodium chloride. The drawback that bacterial nanocellulose suffers after simple air-drying technique was solved in a simple manner by incorporation of the above additives. The characteristic fast release of the incorporated red dye azorubine was observed with the control air-dried bacterial nanocellulose as about 98% of the drug was released within the first hour. However, after modification of the nanocellulose with the hydrophilic additives, controlled re-swelling and drug release over a prolonged times could be achieved (Table 1.2).

CNF-gelatin structure for controlled release of nanocurcumin to be used for wound dressing and antimicrobial applications was developed through a

Nanocellulose type	Dosage form	Drug release mechanism	
CNC-alginate	Microspheres Hydrogel microparticle	Diffusional transport [38] Diffusional transport [38]	
CNC-chitosan	Microspheres	Fickian diffusion [39]	
Cellulose nanofibers	Self-assembled	First-order model [40]	
CNFs (spray dried)	Matrix microspheres	Diffusion, but differ as per the drug [41]	
Dissolved cellulose	Beads	Diffusion-controlled release [43]	
Spray-dried CNF	Tablets	Fast drug release, fast disintegration [45]	
CNC–β-cyclodextrin	Supramolecular hydrogel	Fickian diffusion [59]	
Bacterial nanocellulose	Hydrogel	Diffusion and swelling [62]	

	Table 1.2	Drug	release	mechanism.
--	-----------	------	---------	------------

green process [63]. CNF–gelatin system impregnated with nanocurcumin was reported to be superior in its antimicrobial activity against *Escherichia coli* and *Staphylococcus aureus* when compared with the non-formulated curcuminimpregnated structure. Nontoxic, injectable, and biodegradable hydrogels capable of higher nanoparticle loading was were developed using CNCs as reinforced fillers, which have great potential in drug delivery applications [57]. Bacterial nanocellulose–alginate hydrogels were also investigated for encapsulation of cells in biomedical engineering [64].

1.8 Nanocellulose in Transdermal Drug Delivery

Delivery of drugs through the skin offers several advantages over other routes including elimination of first-pass metabolism, minimization of pain, prolonged release of the drug, and the potential to terminate drug absorption by removing the patch from the skin [65]. Nanocellulose, especially bacterial cellulosic sources, has attracted a great deal of interest in the development of controlled transdermal drug delivery and wound healing preparations [66–69].

Bacterial nanocellulose-based 3D network was fabricated for controlled transdermal delivery of berberine [66]. A significant extension of drug release was achieved even when compared with the commercially available system (Figure 1.6). Drug

Figure 1.6 Influence of medium composition on the release from F_5 and F_{10} membranes of BC–berberine hydrochloride at 37 °C. The inset graph is an enlarged view from 0 to 2 h. Each data point is the average of six experiments ± standard deviation. (Huang *et al.* 2013 [66]. Reproduced with permission of Royal Society of Chemistry.)

14 1 Application of Nanocellulose for Controlled Drug Delivery

release showed pH dependence, with diffusion being the most prominent drug release mechanism. An active wound dressing system based on bacterial nanocellulose was also developed, which was impregnated with an antiseptic drug, octenidine [68]. The system was found to possess physicochemical strength, high biocompatibility, and properties suitable for transdermal drug delivery. It also demonstrated antimicrobial activity against *S. aureus* and remains biologically active over a period of 6 months. A highly biocompatible system with good antiseptic property was also prepared by impregnating bacterial nanocellulose with polyhexanide and povidone-iodine [69]. Drug release was found to depend on diffusion and swelling. Bacterial nanocellulose has also been investigated for controlled transdermal delivery of other drugs such as diclofenac sodium [70, 71], and they may also be physically modified using methods such as gamma irradiation treatment [67] for transdermal applications.

A few research works on CNCs for transdermal delivery have also been dedicated in recent years. A transdermal delivery system for hydroquinone was developed to inhibit the production of melanin and prevent discoloration of the skin [72]. CNCs were prepared by sulfuric acid hydrolysis, and drug loading was done through complexation method, yielding particle size of about 310 nm. Sustained release of hydroquinone was achieved with 80% of the bound drug released in 4h. A biocompatible and biodegradable transdermal carrier for procaine hydrochloride delivery was prepared using chitosan-functionalized oxidized CNCs [73]. At pH8, a fast release of the drug in 1 h was obtained.

1.9 Conclusion

Nanocellulose in different forms obtained from various sources has been widely investigated as controlled drug delivery vehicle. Even though it was isolated way back in 1949, CNCs and other nanocellulosic forms have received interest in drug delivery only in the last few years. Their biocompatibility, biodegradability, and exceptional physicochemical properties definitely made them an excellent candidate in a wide range of biomedical applications. The reports available at present indicate that nanocelluloses possess the required biocompatibility and biodegradability criteria for the development of different pharmaceutical dosage forms. Investigations of different nanoparticulate preparations based on nanocellulose indicate that they interacted well with the cells and the cellular uptake mainly takes place through endocytosis. Evaluation of drug release from such controlled delivery system shows that drug release is mainly diffusion dependent and prolonged drug delivery can be achieved through proper formulation development.

References

1 Jantzen, G.M. and Robinson, J.R. (2002) Sustained and controlled-release drug delivery systems, in *Modern Pharmaceutics*, 4th edn (eds G.S. Banker and C.T. Rhodes), Marcel Dekker, New York.

- 2 Siepmann, J. and Siepmann, F. (2009) in *Modern Pharmaceutics: Application and Advances*, vol. **2**, 5th edn (eds A.T. Florence and J. Siepmann), Informa Healthcare, New York, pp. 1–22.
- **3** Uhrich, K.E., Cannizzaro, S.M., Langer, R.S., and Shakesheff, K.M. (1999) Polymeric system for controlled drug release. *Chem. Rev.*, **99**, 3181–3198.
- 4 Moghimi, S.M., Hunter, A.C., and Murray, J.C. (2005) Nanomedicine: current status and future prospects. *FASEB J.*, **19**, 311–330.
- 5 Wagner, V., Dullaart, A., Bock, A., and Zwek, A. (2006) The emerging nanomedicine landscape. *Nat. Biotechnol.*, **24**, 1211–1217.
- **6** Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and Rudzinski, W.E. (2001) Biodegradable polymeric nanoparticles as drug delivery devices. *J. Controlled Release*, **70**, 1–20.
- 7 Kamaly, N., Xioa, Z., Valencia, P.M., Radovic-Moreno, A.F., and Farokhzad, O.C. (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. *Chem. Soc. Rev.*, 41, 2971–3010.
- 8 Dang, J.M. and Leoung, K.W. (2006) Natural polymers for gene delivery and tissue engineering. *Adv. Drug Delivery Rev.*, **58**, 487–499.
- 9 Pillay, O. and Panchagnula, R. (2001) Polymers in drug delivery. *Curr. Opin. Chem. Biol.*, **5**, 447–451.
- 10 Mohammadinejad, R., Karimi, S., Iravani, S., and Varma, R.S. (2016) Plantderived nanostructures: types and applications. *Green Chem.*, 18, 20–52.
- 11 Peng, B.L., Dhar, N., Liu, H.L., and Tam, K.C. (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. *Can. J. Chem. Eng.*, **89**, 1191–1206.
- 12 Pachuau, L. (2015) A mini review on plant-based nanocellulose: production, sources, modifications and its potential in drug delivery applications. *Mini Rev. Med. Chem.*, 15, 543–552.
- 13 Domingues, R.M.A., Gomes, M.E., and Reis, R.L. (2014) The potential of cellulose nanocrystals in tissue engineering strategies. *Biomacromolecules*, 15, 2327–2346.
- 14 Habibi, Y., Lucia, L.A., and Rojas, O.J. (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. *Chem. Rev.*, **110**, 3479–3500.
- 15 Tingaut, P., Zimmermann, T., and Sebe, G. (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. *J. Mater. Chem.*, 22, 20105–20111.
- 16 Dufresne, A. (2013) Nanocellulose: a new ageless bionanomaterial. *Mater. Today*, 16, 220–227.
- 17 Sacui, I.A., Nieuwendaal, R.C., Burnett, D.J. *et al.* (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. *ACS Appl. Mater. Interfaces*, 6, 6127–6138.
- 18 Plackett, D.V., Letchford, K., Jackson, J.K., and Burt, H.M. (2014) A review of nanocellulose as novel vehicle for drug delivery. *Nord. Pulp Pap. Res. J.*, 29, 105–118.
- 19 Sungawa, N., Tajima, K., Hosoda, M. *et al.* (2012) Cellulose production by *Enterobacter* sp. CJF-002 and identification of genes for cellulose biosynthesis. *Cellulose*, 19, 1989–2001.

- 16 1 Application of Nanocellulose for Controlled Drug Delivery
 - 20 Bodin, A., Backdahl, H., Fink, H., Gustafsson, L., Risberg, B., and Gatenholm, P. (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. *Biotechnol. Bioeng.*, 97, 425–434.
 - **21** Abeer, M.M., Amin, M.C.I.M., and Martin, C. (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. *J. Pharm. Pharmacol.*, **66**, 1047–1061.
 - 22 Rowe, R.C., Sheskey, P.J., and Owen, S.C. (eds) (2006) *Handbook of Pharmaceutical Excipients*, 5th edn, Pharmaceutical Press, London.
 - 23 Ranby, B.G. (1949) Aqueous colloidal solutions of cellulose micelles. *Acta Chem. Scand.*, 3, 649–650.
 - 24 Kumari, A., Yadav, S.K., and Yadav, S.C. (2010) Biodegradable polymeric nanoparticles based drug delivery systems. *Colloids Surf.*, *B*, **75**, 1–18.
 - 25 Roman, M., Dong, S., Hirani, A., and Lee, Y.W. (2010) Cellulose nanocrystals for drug delivery, in *Polysaccharide Materials: Performance by Design*, ACS Symposium Series (eds K. Edgar *et al.*), American Chemical Society, Washington, DC.
 - 26 Dong, S., Hirani, A.A., Kolacino, K.R., Lee, Y.W., and Roman, M. (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. *Nano Life*, 2, 1241006.
 - 27 Mahmoud, K.A., Mena, J.A., Male, K.B., Hrapovic, S., Kamen, A., and Luong, J.H.T. (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. *ACS Appl. Mater. Interfaces*, 2, 2924–2932.
 - 28 Dong, S., Cho, H.J., Lee, Y.W., and Roman, M. (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. *Biomacromolecules*, 15, 1560–1567.
 - **29** Jackson, J.K., Letchford, K., Wasserman, B.Z., Ye, L., Hamad, W.Y., and Burt, H.M. (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. *Int. J. Nanomed.*, **6**, 321–330.
 - 30 Ntoutoume, G.M.A., Granet, R., Mbakidi, J.P. *et al.* (2016) Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. *Bioorg. Med. Chem. Lett.*, 26, 941–945.
 - **31** Wang, H., He, J., Zhang, M., Tam, K.C., and Ni, P. (2015) A new pathway towards polymer modified cellulose nanocrystals via a "grafting onto" process for drug delivery. *Polym. Chem.*, **6**, 4206–4209.
 - 32 Hua, K., Alander, E., Lindstorm, T., Mihranyan, A., Stromme, M., and Ferraz, N. (2015) Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. *Biomacromolecules*, 16, 2787–2795.
 - 33 Kovacs, T., Naish, V., O'Connor, B. *et al.* (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). *Nanotoxicology*, 4, 255–270.
 - Kummerer, K., Menz, J., Schubert, T., and Thielemans, W. (2011)
 Biodegradability of organic nanoparticles in the aqueous environment. *Chemosphere*, 82, 1387–1392.
 - **35** Geng, Y., Dalhaimer, P., Cai, S. *et al.* (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. *Nat. Nanotechnol.*, **2**, 249–255.
 - **36** Simone, E.A., Dzubiula, T.D., and Muzykantov, V.R. (2008) Polymeric carriers: role of geometry in drug delivery. *Expert Opin. Drug Delivery*, **5**, 1283–1300.

- 37 Wang, H. and Roman, M. (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte–macroion complexes for drug delivery applications. *Biomacromolecules*, 12, 1585–1593.
- 38 Lin, N., Huang, J., Chang, P.R., Feng, L., and Yu, J. (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginatebased microspheres. *Colloids Surf.*, *B*, 85, 270–279.
- **39** Mohanta, V., Madras, G., and Patil, S. (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. *ACS Appl. Mater. Interfaces*, **6**, 20093–20101.
- **40** Gao, J., Li, Q., Chen, W., Liu, Y., and Yu, H. (2014) Self-assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. *ChemPlusChem*, **79**, 725–731.
- 41 Kolakovic, R., Laaksonen, T., Peltonen, L., Laukkanen, A., and Hirvonen, J. (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. *Int. J. Pharm.*, 430, 47–55.
- 42 Amin, M.C.I.M., Abadi, A.G., and Katas, H. (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. *Carbohydr. Polym.*, 99, 180–189.
- 43 Yildir, E., Kolakovic, R., Genina, N. *et al.* (2013) Tailored beads made of dissolved cellulose—investigation of their drug release properties. *Int. J. Pharm.*, 456, 417–423.
- 44 Huq, T., Riedl, B., Bouchard, J., Salmieri, S., and Lacroix, M. (2014) Microencapsulation of nisin in alginate-cellulose nanocrystal (CNC) microbeads for prolonged efficacy against *Listeria monocytogenes*. *Cellulose*, 21, 4309–4321.
- **45** Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., and Hirvonen, J. (2011) Spray-dried cellulose nanofibers as novel tablet excipients. *AAPS PharmSciTech*, **12**, 1366–1373.
- 46 Emara, L., El-Ashmawy, A., Taha, N., El-Shaffei, K., Mahdey, S., and El-Kholly, H. (2014) Freeze-dried nanocrystalline cellulose derived from water sugar-cane bagasse as a novel tablet excipients. The 41st Annual Meeting & Exposition of the Controlled Release Society, Chicago, IL, USA, July 13–16, 2014.
- **47** Akin-Ajani, O.D., Itiola, O.A., and Odeku, O.A. (2016) Evaluation of the disintegrant properties of native and modified forms of fonio and sweet potato starches. *Starch/Starke*, **68**, 169–174.
- 48 Niwa, M. and Hiraishi, Y. (2014) Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging. *Int. J. Pharm.*, 461, 342–350.
- **49** Wang, C., Huang, H., Jia, M., Jin, S., Zhao, W., and Cha, R. (2015) Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. *Carbohydr. Polym.*, **130**, 275–279.
- 50 Huq, T., Vu, K.D., Riedl, B., Bouchard, J., Han, J., and Lacroix, M. (2016) Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. *Cellulose*, 23, 1967–1978.
- 51 Garcia-Gonzalez, C.A. and Smirnova, M.A.I. (2011) Polysaccharide-based aerogels- promising biodegradable carriers for drug delivery systems. *Carbohydr. Polym.*, 86, 1425–1438.

- 18 1 Application of Nanocellulose for Controlled Drug Delivery
 - **52** Chen, W., Li, Q., Wang, Y. *et al.* (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. *ChemSusChem*, 7, 154–161.
 - 53 Valo, H., Arola, S., Laaksonen, P. *et al.* (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. *Eur. J. Pharm. Sci.*, 50, 69–77.
 - 54 Dong, H., Snyder, J.F., Tran, D.T., and Leadore, J.T. (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. *Carbohydr. Polym.*, 95, 760–767.
 - 55 Elisseeff, J. (2008) Structure starts to gel. Nat. Mater., 7, 271–273.
 - **56** Jagur-Grodzinksi, J. (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. *Polym. Adv. Technol.*, **21**, 27–47.
 - 57 Yang, X., Bakaic, E., Hoare, T., and Cranston, E.E. (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. *Biomacromolecules*, 14, 4447–4455.
 - 58 Muller, A., Zink, M., Hessler, N. *et al.* (2014) Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. *RSC Adv.*, 4, 57173.
 - 59 Lin, N. and Dufresne, A. (2013) Supramolecular hydrogels from in situ host – guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. *Biomacromolecules*, 14, 871–880.
 - 60 Lin, N., Geze, A., Wouessidjewe, D., Huang, J., and Dufresne, A. (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs co-delivery. *ACS Appl. Mater. Interfaces*, 8, 6880–6889.
 - **61** McKee, J.R., Hietala, S., Seitsonen, J., Laine, J., Kontturi, E., and Ikkala, O. (2014) Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. *ACS Macro Lett.*, **3**, 266–270.
 - 62 Muller, A., Ni, Z., Hessler, N. *et al.* (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. *J. Pharm. Sci.*, 102, 579–593.
 - **63** Raghavendra, G.M., Jayaramudu, T., Varaprasad, K., Ramesh, S., and Raju, K.M. (2014) Microbial resistant nanocurcumin-gelatin-cellulose fibers for advanced medical applications. *RSC Adv.*, **4**, 3494.
 - 64 Park, M., Lee, D., and Hyun, J. (2015) Nanocellulose-alginate hydrogel for cell encapsulation. *Carbohydr. Polym.*, **116**, 223–228.
 - **65** Denet, A., Ucakar, B., and Preat, V. (2003) Transdermal delivery of timolol and atenolol using electroporation and iontophoresis in combination: a mechanistic approach. *Pharm. Res.*, **20**, 1946–1951.
 - 66 Huang, L., Chen, X., Nguyen, T.X., Tang, H., Zhang, L., and Yang, G. (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. *J. Mater. Chem. B*, 1, 2976.
 - 67 De Olyveira, G.M., Costa, L.M.M., and Basmaji, P. (2013) Physically modified bacterial cellulose as alternative routes for transdermal drug delivery. *J. Biomater. Tissue Eng.*, **3**, 1–6.
 - 68 Moritz, S., Wiegand, C., Wesarg, F. *et al.* (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. *Int. J. Pharm.*, 471, 45–55.

- **69** Wiegand, C., Moritz, S., Hessler, N. *et al.* (2015) Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. *J. Mater. Sci. Mater. Med.*, **26**, 245.
- 70 Almeida, I.F., Pereira, T., Silva, N.H.C.S. *et al.* (2014) Bacterial cellulose membranes as drug delivery systems: an *in vivo* skin compatibility study. *Eur. J. Pharm. Pharm.*, 86, 332–336.
- 71 Silva, N.H.C.S., Rodrigues, R.F., Almeida, I.F. *et al.* (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: *in vitro* dissolution and permeation studies. *Carbohydr. Polym.*, **106**, 264–269.
- 72 Taheri, A. and Mohammadi, M. (2015) The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. *Chem. Biol. Drug Des.*, 86, 102–106.
- 73 Akhlaghi, S.P., Berry, R.C., and Tam, K.C. (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. *Cellulose*, 20, 1747–1764.

WILEY-VCH

Edited by Mohammad Jawaid and Faruq Mohammad

Nanocellulose and Nanohydrogel Matrices

Biotechnological and Biomedical Applications

Nanocellulose and Nanohydrogel Matrices

Biotechnological and Biomedical Applications

Edited by Mohammad Jawaid and Faruq Mohammad

WILEY-VCH

Editors

Dr. Mohammad Jawaid Laboratory of Biocomposite Technology Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia

Dr. Faruq Mohammad Surfactant Research Chair Department of Chemistry College of Science King Saud University P.O. Box 2455, Riyadh 11451 Saudi Arabia

Cover

Gettyimages: seraficus

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34172-6 ePDF ISBN: 978-3-527-80382-8 ePub ISBN: 978-3-527-80385-9 Mobi ISBN: 978-3-527-80384-2 oBook ISBN: 978-3-527-80383-5

Typesetting SPi Global Private Limited, Chennai, India Printing and Binding

Printed on acid-free paper

Contents

List of Contributors xvii

1	Application of Nanocellulose for Controlled Drug Delivery 1			
1 1	Lalaunsanga Pachuau			
1.1	Introduction I			
1.2	of Nanocellulose 3			
1.3	Nanocellulose in Nanoparticulate Drug Delivery 5			
1.4	Nanocellulose in Microparticulate Drug Delivery 8			
1.5	Nanocellulose in Tablet Formulations 10			
1.6	Aerogel Systems 10			
1.7	Hydrogels 11			
1.8	Nanocellulose in Transdermal Drug Delivery 13			
1.9	Conclusion 14			
	References 14			
2	Bacterial Cellulose and Polyester Hydrogel Matrices in Biotechnolo			
	and Biomedicine: Current Status and Future Prospects 21			
LIV2/	Rajnikant Borkar, Sanghratna S. Waghmare, and Tanvir Arfin			
2.1	Introduction 21			
2.2	Chemical Structure of Cellulose 21			
2.3	Types of Cellulose 21			
2.4	Bacterial Cellulose 22			
2.5	Chemical Structure of BC 22			
2.6	History of BC 23			
2.7	Biosynthesis of Bacterial Cellulose 23			
2.8	Properties 23			
2.8.1	Biocompatibility 25			
2.8.1.1	In Vitro Biocompatibility 25			
2.8.1.2	In Vivo Biocompatibility 26			
2.8.2	Hemocompatibility 26			
2.8.3	Mechanical Properties 27			
2.8.4	Microporosity 27			
2.8.5	Biodegradability 28			

Application of Nanocellulose for Controlled Drug Delivery

Lalduhsanga Pachuau

1

Assam University, Department of Pharmaceutical Sciences, Silchar, Assam 788011, India

1.1 Introduction

The therapeutic effectiveness of a pharmacological treatment depends upon the availability of the active drug at the site of action in a concentration that exceeds the minimum effective concentration. However, more often than not, this ideal condition for therapeutic activity is not met due to several inherent pharmaceutical and pharmacological properties of the drug. In fact, it has been generally recognized that for many disease states, there are substantially good numbers of therapeutically effective compounds available on offer [1]. The obvious cause of therapeutic failure with several of these otherwise promising compounds when used in a clinical setting is that they are unable to reach the site of action. The potential reasons for the poor bioavailability of the drugs at the required site include (i) poor water solubility, (ii) poor permeability across the biological membranes, and (iii) rapid metabolism and clearance from the body [2]. The aim of controlled drug delivery is, therefore, to overcome these limitations to effective drug therapy by localizing drug release at the site of action, reducing the dose required, and providing constant drug release. As a result, controlled drug delivery systems offer several advantages over conventional system in reducing the toxicity, enhancing the activity, and ultimately improving the patient convenience and compliance [3]. Several dosage forms, conventional and nonconventional, have been developed and continuously improved over the years to achieve better drug therapy. One of the newer approaches for improved drug delivery that received enormous interest in recent times is nanomedicine. The applications of nanotechnology for treatment, diagnosis, monitoring, and control of biological systems have recently been referred to as *nanomedicine* by the National Institutes of Health [4]. Drug delivery is the dominant area of nanomedicine research as it accounts for 76% and 59% of all recent scientific papers and patents on nanomedicine, respectively [5].

Polymers are the backbone of controlled drug delivery systems. Over the past few decades, there has been considerable interest in the development of effective drug delivery devices based on biodegradable nanoparticles [6]. Both natural and

1

Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications, First Edition. Edited by Mohammad Jawaid and Faruq Mohammad. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.