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1

1.1  Introduction

The therapeutic effectiveness of a pharmacological treatment depends upon the 
availability of the active drug at the site of action in a concentration that exceeds 
the minimum effective concentration. However, more often than not, this ideal 
condition for therapeutic activity is not met due to several inherent pharmaceuti-
cal and pharmacological properties of the drug. In fact, it has been generally rec-
ognized that for many disease states, there are substantially good numbers of 
therapeutically effective compounds available on offer [1]. The obvious cause of 
therapeutic failure with several of these otherwise promising compounds when 
used in a clinical setting is that they are unable to reach the site of action. The 
potential reasons for the poor bioavailability of the drugs at the required site 
include (i) poor water solubility, (ii) poor permeability across the biological mem-
branes, and (iii) rapid metabolism and clearance from the body [2]. The aim of 
controlled drug delivery is, therefore, to overcome these limitations to effective 
drug therapy by localizing drug release at the site of action, reducing the dose 
required, and providing constant drug release. As a result, controlled drug deliv-
ery systems offer several advantages over conventional system in reducing the 
toxicity, enhancing the activity, and ultimately improving the patient convenience 
and compliance [3]. Several dosage forms, conventional and nonconventional, 
have been developed and continuously improved over the years to achieve better 
drug therapy. One of the newer approaches for improved drug delivery that 
received enormous interest in recent times is nanomedicine. The applications of 
nanotechnology for treatment, diagnosis, monitoring, and control of biological 
systems have recently been referred to as nanomedicine by the National Institutes 
of Health [4]. Drug delivery is the dominant area of nanomedicine research as it 
accounts for 76% and 59% of all recent scientific papers and patents on nanomedi-
cine, respectively [5].

Polymers are the backbone of controlled drug delivery systems. Over the past 
few decades, there has been considerable interest in the development of effective 
drug delivery devices based on biodegradable nanoparticles [6]. Both natural and 
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1 Application of Nanocellulose for Controlled Drug Delivery2

synthetic polymers with a wide range of safety and functionalities are extensively 
investigated in designing controlled delivery systems. The investigations into the 
novel synthetic and fabrication methods, and mathematical models to study the 
mechanisms of controlled drug release, have resulted in the ability to create tun-
able polymeric nanoparticulate drug delivery systems that are capable of taking 
care of the spatial and temporal aspects of controlled drug delivery [7]. Due to 
their cytocompatibility, biodegradability, and availability of reactive sites amena-
ble for ligand conjugation, cross‐linking, and other modifications, natural poly-
mers have been successfully used in controlled drug delivery [8, 9]. Plant‐derived 
nanostructures such as starch, cellulose, zeins, legume proteins, and others are 
particularly attractive sources as they are cost effective, sustainable, and renew-
able with excellent tunable properties [10].

Nanocellulose obtained from cellulose – the most abundant biopolymer on 
Earth – is an emerging renewable polymeric nanomaterial that holds promise in 
many different applications including food and pharmaceuticals [11, 12]. Due to 
its excellent biocompatibility, biodegradability, and low ecological toxicity risk 
and low cytotoxicity to a range of animal and human cell types [13], nanocellulose 
is currently a subject of interdisciplinary material of interest. Excellent discus-
sions on the chemistry, preparation, and the general properties of nanocellulose 
are available from several literatures [12, 14–17]. Nanocellulose can be obtained 
from a wide variety of sources and their properties were also found to depend on 
the source from which they are prepared (Figure 1.1). Broadly, they are divided 
into three categories such as bacterial cellulose (BC), cellulose nanocrystals  
(CNCs) (also called as cellulose nanowhiskers or nanocrystalline cellulose), and 
cellulose nanofibrils (CNFs) depending on their source and methods of produc-
tion [18]. Those obtained from acid or enzyme hydrolysis are commonly called as 
CNC, while those obtained through mechanical treatments are termed as cellu-
lose nanofibrils (CNFs). Bacterial nanocellulose is another highly crystalline form 

(a)

(e) (f) (g)

(b) (c) (d)

500 nm500 nm500 nm500 nm

500 nm 500 nm 500 nm

Figure 1.1 TEM images of (a) bacterial HCl, (b) bacterial sulfate, (c) tunicate sulfate, (d) wood 
enzymatic, (e) wood mechanically refined, (f ) wood sulfate, and (g) wood TEMPO. (Sacui et al. 
2014 [17]. Reproduced with permission of American Chemical Society.)
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of cellulose, which is obtained mainly from Gluconacetobacter xylinus [19]. The 
presence of free reactive hydroxyl group exposed at the surface and its nanometer 
size dimension rendered nanocellulose a good candidate for imparting different 
functionalities through chemical derivatization. Since cellulose is stable to a wide 
range of temperatures, it can also be subjected to heat sterilization methods, 
which is often required in biomedical applications [20]. All the different catego-
ries of nanocelluloses have been widely investigated in drug delivery systems. 
Also, since BC can be purified using sodium hydroxide to the US Food and Drug 
Administration (FDA) acceptable range of endotoxin values for implants, that is, 
<20 endotoxin units/device, they are also potentially safe for use in intravenous 
applications [21].

Different cellulose derivatives including ethylcellulose, methylcellulose, car-
boxymethyl cellulose, and hydroxypropylmethyl cellulose are indispensable in 
drug delivery and pharmaceutical technology. They are listed as generally recog-
nized as safe (GRAS) by the FDA and are widely used in the preparation of drug 
products [22]. Even though it was way back in 1949 that Ranby [23] successfully 
produced a micellar cellulose solution, it is only in the last few years that the 
potential of nanocellulose in drug delivery has been realized and research into 
this material has began to pick up. Current research into the application of nano-
cellulose in drug delivery includes formulation of nanoparticles, microparticles, 
tablets, aerogels, hydrogels, and transdermal drug delivery systems. This chapter 
will describe the current and recent research activities in the application of nano-
cellulose in the preparation of different dosage forms.

1.2  Biodegradability, Cytotoxicity, and Cellular 
Internalization of Nanocellulose

Choosing a suitable polymer that is biocompatible, able to encapsulate, control, 
and target the release of the drug and yet biodegradable is highly critical for the 
successful formulation of nanomedicine. The ability of nanomedicines to target 
specific sites depends upon the particle size, surface charge, surface modification, 
and hydrophobicity, which in turn determine their interaction with the cell mem-
brane and their penetration across the physiological drug barriers [24]. Therefore, 
it is important that the biodegradability, cytotoxicity to a range of human cell types, 
and the mechanism of cellular uptake of nanocellulose‐based delivery systems are 
investigated (Table 1.1). When investigated against nine different cell lines such as 
HBMEC, bEnd.3, RAW 264.7, MCF‐10A, MDA‐MB‐231, MDA‐MB‐468, KB, 
PC‐3, and C6 following the MTT and LDH assay methods, the filamentous CNCs 
showed no cytotoxic effects against any of these cell lines in the concentration 
range (0–50 µg ml−1) during the exposure time (48 h) [25, 26]. Low nonspecific cel-
lular uptake was observed when cellular uptake was evaluated through fluores-
cein‐5′‐isothiocyanate labeling, which indicates that CNCs are good candidates for 
nano drug delivery applications. In another study, the cellular uptake of negatively 
charged fluorescein isothiocyanate (FITC)‐labeled CNCs was evaluated and com-
pared against the positively charged rhodamine B isothiocyanate‐labeled CNCs 
(RBITC) in human embryonic kidney 293 (HEK 293) and Spodoptera frugiperda 
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(Sf9) cells [27]. This study reports that the positively charged CNC–RBITC conju-
gate was uptaken by the cells without affecting the integrity of the cell membrane 
and there was no noticeable cytotoxic effect observed (Figure 1.2), whereas the 
negatively charged CNC–FITC conjugate resulted in no significant internalization 
at physiological pH but the effector cells were surrounded by CNC–FITC, leading 
to eventual cell rupture showing the importance of the surface charge of CNC for 
bioimaging and drug delivery.

Due to the availability of reactive groups on the surface of nanocelluloses, they 
are often functionalized with functional groups to improve their physicochemi-
cal and functional properties. In recent study, nanofribrillated cellulose (NFC) 
was surface‐functionalized with anionic and cationic groups, and the effect of 
this functionalization on the monocyte/macrophage (MM) reaction was investi-
gated along with the unmodified form to have a better understanding on the 

Table 1.1 Cellular uptake mechanisms of different formulations.

Formulation type Release 
mechanism

Cells used Cellular uptake

Nanocrystals — HBMEC, bEnd.3, RAW 
264.7, MCF‐10A, MDA‐
MB‐231, MDA‐MB‐468, 
KB, PC‐3, and C6

Low nonspecific 
cellular uptake [25, 26]

Negatively charged 
fluorescein 
isothiocyanate‐labeled 
CNCs (FITC)

— HEK 293 and Sf9 No significant uptake 
[27]

Positively charged 
rhodamine B 
isothiocyanate‐labeled 
CNCs (RBITC)

— HEK 293 and Sf9 High uptake, due to 
favorable electrostatic 
interaction between 
cationic RBITC and 
anionic cellular 
membrane [27]

Folic acid‐conjugated 
CNCs

— DBTRG‐05MG, H4, 
and C6

Caveolae‐mediated 
endocytosis and 
clathrin‐mediated 
endocytosis in H4 cells 
[28]

Acid‐hydrolyzed CNCs Slow release 
over 4 days

KU‐7 bladder cancer 
cells

Evidence of cellular 
uptake may be due to 
partitioning following 
cell binding [29]

Curcumin–cyclodextrin/
CNC nanocomplex

Slow release Colorectal and prostatic 
cancer cell lines (PC‐3, 
DU145, and HT‐29)

Endocytosis [30]

Polyphosphoester‐ 
grafted CNC

pH‐Dependent, 
slow and 
controlled 
release

HeLa cells and L929  
cells

Endocytosis [31]
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effect of physicochemical properties of nanocellulose on its interactions with 
biological systems [32]. Cell response was evaluated in terms of cell adhesion, 
morphology, and secretion of TNF‐α, IL‐10, and IL‐1ra after THP‐1 monocytes 
were cultured on the surface of the films for 24 h in the presence and absence of 
lipopolysaccharide. A pro‐inflammatory phenotype was found to activate the 
anionic carboxymethylated NFC films, while the unmodified forms promote a 
mild activation and cationic hydroxypropyl‐trimethylammonium groups does 
not resulted in the activation of MMs at all. This study significantly enhances our 
understanding on the importance of surface charges on the nanocellulose deriva-
tives when they are intended to be used for biomedical applications (Figure 1.3).

With the advent of nanotechnology and the availability of a multitude of nano-
materials synthesized from innumerable numbers of materials, concerns over an 
ecotoxicological risks associated with their exposure and biodegradability loom 
large. Toxicity test of CNCs with rainbow trout hepatocytes and nine aquatic 
species showed that CNCs exhibit a low toxicity potential and environmental 
risk [33]. When the biodegradability of CNC in aqueous environment was also 
studied as per the OECD standard and compared with other nanomaterials, 
CNCs and starch nanoparticles were found to biodegrade at similar levels but 
faster than their counterparts such as fullerenes and functionalized carbon nano-
tubes, which was attributed to their higher surface area [34].

1.3  Nanocellulose in Nanoparticulate Drug Delivery

Drug delivery research over the years has become highly interdisciplinary. 
Researchers from diverse fields such as biomedical engineering, pharmaceutical 
sciences, and life sciences investigate into a plethora of research questions  pertaining 
to their background. One of the interesting findings, as a result, is the effect of 

Bright �eld

pH

5

pH

6.5

(a) (b)

Fluorescence �eld Bright �eld Fluorescence �eld

Figure 1.2 Mixed‐field and fluorescence microscopy images comparing the uptake of  
CNC–FITC (upper) with CNC–RBITC (lower) by Sf9 cells at (a) pH 5 and (b) pH 6.5. Cells were 
incubated with CNC–FITC or CNC–RBITC during 3 h at respective pH and then fixed for 
confocal microscope measurement. (Mahmoud et al. 2010 [27]. Reproduced with permission 
of American Chemical Society.)
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u-NFC

a-NFC

c-NFC c-NFC/LPS

TMX/LPSTMX

(a) (b)

10 μm 10 μm

10 μm

10 μm 10 μm

10 μm10 μm

10 μm

u-NFC/LPS

a-NFC/LPS

Figure 1.3 Representative SEM micrographs at ~1000 times magnification of THP‐1 monocytes 
cultured for 24 h on u‐NFC, a‐NFC, c‐NFC, and TMX in the presence (b) and absence of LPS (a). 
Mainly rounded single cells are found on c‐NFC and TMX. Cells on a‐NFC tended to form clusters 
and presented many short filopodia, while u‐NFC presented both single cells and small cell 
clusters, with few and short filopodia. This figure represents the importance of surface charge on 
the CNCs. (Hua et al. 2015 [32]. Reproduced with permission of American Chemical Society.)
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 nanoparticles’ geometry on the effectiveness of the delivery system. When polymeric 
micelles of flexible filament types were compared with the spherical types, the fila-
ment types exhibit 10 times longer circulation time and are also taken up more 
readily by cells as a result of their extended flow [35]. The anticancer drug paclitaxel 
was effectively delivered, which resulted in the shrinking of the human‐derived 
tumors in mouse model. Other elongated novel carriers such as elongated 
liposomes, carbon nanotubes, and others are also reported to exhibit much longer 
clearance time when compared with the spherical systems [36]. These findings 
coupled with the outstanding surface area‐to‐volume ratio of filamentous nanocel-
luloses have attracted researchers to develop a novel nanoparticulate drug delivery 
system based on nanocellulose. Folic acid‐conjugated CNCs were synthesized for 
cellular uptake and folate receptor‐positive cancer targeting of chemotherapeutics 
[28]. When tested on such folate receptor‐positive human (DBTRG‐05MG, H4) 
and rat (C6) brain tumor cells, the cellular binding and uptake of the conjugate 
were 1452, 975, and 46 times higher in the DBTRG‐05MG, H4, and C6 cells than 
the non‐conjugated cellulose nanoparticles, respectively. The uptake mechanism 
of the conjugate by DBTRG‐05MG and C6 cells was also found to be primarily 
through caveolae‐mediated endocytosis and through clathrin‐mediated endocyto-
sis in H4 cells.

One of the earliest reports on the application of acid‐hydrolyzed CNCs was 
published in 2011 [29]. The study reported the binding of the water‐soluble, ion-
izable drugs tetracycline and doxorubicin to the CNCs, which resulted in the 
rapid release of drugs over a period of 1 day. When the CNCs were treated with 
cetyltrimethylammonium bromide, a significant increase in zeta potential was 
observed, which bound significant quantities of hydrophobic drugs such as doc-
etaxel, paclitaxel, and etoposide. The bound drugs were shown to be released 
over a 2‐day period in a controlled manner, and an evidence of cellular uptake of 
the nanocomplex by the KU‐7 bladder cancer cells was also observed. A polye-
lectrolyte–macroion complex between anionic CNCs and a cationic chitosan 
was also prepared for controlled drug delivery (Figure 1.4), which resulted in 
nearly spherical nanoparticles with positive charge at amino/sulfate group molar 
ratios >1 and nonspherical nanoparticles with negative charge when particles 
were formed at the ratios <1 [37]. Another ionic nanocomplex prepared between 
cationic β‐cyclodextrin (β‐CD) and the CNCs was also used to encapsulate cur-
cumin for controlled drug delivery. The CNCs were obtained by sulfuric acid 
hydrolysis, while cationic β‐CDs were obtained by the reaction of glycidyltri-
methylammonium chloride with β‐CD in alkaline aqueous medium. When 
tested in vitro, the nanocomplex was shown to exhibit an antiproliferative effect 
on colorectal and prostatic cancer cell lines where the IC50 was found to be lower 
than that of curcumin alone [30].

A novel polyphosphoester‐grafted CNC was developed by the “grafting onto” 
process through “click” reaction, which possessed a negatively charged surface 
suitable for binding doxorubicin and delivers it to the HeLa cells. The system 
showed a good biocompatibility to both HeLa cells and L929 cells, internalized 
through endocytosis, and exhibited an anticancer activity against HeLa cells 
where the drug released was caused by the disruption of the electrostatic interac-
tion in the acidic environment inside the tumor cells [31]. The novel modified 
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CNC was found to show a good pH response, making it a promising delivery 
vehicle for anticancer drugs.

1.4  Nanocellulose in Microparticulate Drug Delivery

The importance of encapsulating drugs, food actives, flavors, or even cell for 
improved performance and preservation has been well appreciated across differ-
ent scientific fields. A wide range of natural and synthetic polymeric materials 
are available for encapsulation, the choice of which mainly rested upon the 
desired performance of the end products. Nanocellulose is an emerging natural 
polymer that has received considerable interest in recent years as the encapsulat-
ing polymer for drug delivery. It has also been widely investigated to enhance the 

(a) (b)

(c) (d)

(e)

Figure 1.4 FE‐SEM images of PMC particles formed by the addition of a 0.001% (w/v) chitosan 
solution to a 0.02% (w/v) CNC suspension at reaction mixture N/S ratios of (a) 0.33, (b) 0.66, 
(c) 0.99, (d) 1.33, and (e) 1.66. Scale bar: 3 µm (applies to all images). (Wang and Roman 2011 
[37]. Reproduced with permission of American Chemical Society.)
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mechanical properties and influence drug delivery behavior of microcapsules 
prepared with other natural polymers. A study was conducted to evaluate the 
influence of three polysaccharide nanocrystals (PNs) such as CNCs, starch 
nanocrystals, and chitin whiskers on the mechanical and drug release properties 
of sodium alginate microspheres [38]. All the three PNs resulted in improved 
mechanical properties and pH sensitivity of the microspheres. All the PNs were 
found to restrict the motion of the sodium alginate polymer chains and inhibit 
diffusion of the drug, resulting in the slow dissolution of theophylline from the 
microspheres, and diffusion transport was found to be the drug release mecha-
nism from the systems.

An electrostatic interaction between negatively charged CNCs and posi-
tively charged chitosan has also been employed to prepare layer‐by‐layer 
assembled thin film and microcapsules for controlled drug delivery [39]. Both 
the water‐soluble anticancer drug doxorubicin hydrochloride and lipophilic 
curcumin were successfully incorporated into the system for sustained drug 
delivery. Self‐assembled nanocellulose and indomethacin structures were pre-
pared for sustained release of the encapsulated drug [40]. A high encapsula-
tion efficiency of up to 97% of the water‐insoluble drug indomethacin was 
achieved with drug release sustained over 30 days. Drug release was found to 
take place through diffusion, and fitting the drug release curves into various 
equations to determine the drug release mechanism showed that first‐order 
model was the best fit.

Matrix‐type microparticles were prepared by spray drying of nanofibrillar 
cellulose for sustained delivery of different drugs such as indomethacin, nado-
lol, atenolol, metoprolol tartrate, verapamil hydrochloride, and ibuprofen 
[41]. Spherical particles of diameters around 5 µm were obtained by encapsu-
lating the active drug mainly in the amorphous form. Final drug loading was 
quite low, up to 15.1% in indomethacin and 8.2% in verapamil hydrochloride. 
This low drug loading was attributed to the result of the low affinity between 
the drug and the cellulose fibers. When drug release from the microparticles 
was assessed by dissolution study, it was observed that after initial burst 
release, drug release was extremely slow taking over a 2‐month period as a 
result of the tight binding between the drugs and the cellulose fibers. Drugs 
were released by diffusion through the matrix system, and when dissolution 
curves were fitted into different equations, different drugs were found to fol-
low different release kinetics, mainly attributed to the inherent properties of 
the drugs. Microparticles based on BC were also prepared by spray‐drying 
method where the particles obtained were semispherical in shape [42]. The 
resulting particles demonstrate good redispersibility, with better water reten-
tion capacity and higher thermal stability than microcrystalline cellulose 
(MCC). Beads tailored from dissolved cellulose to release the encapsulated 
drugs in a controlled manner were also showed to be a promising controlled 
delivery system [43].

In another application in microencapsulation, nisin‐loaded beads prepared 
with alginate–CNC were evaluated against its ability to inhibit growth of Listeria 
monocytogenes in ready to‐eat (RTE) ham [44]. Nisin‐loaded beads were able to 
prevent the growth of the microorganism for at least 28 days.
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1.5  Nanocellulose in Tablet Formulations

Cellulose and its derivatives in different forms have been indispensable compo-
nents in the preparation of tablets for a long time. Cellulose derivatives such as 
MCC, hydroxypropyl methylcellulose, ethylcellulose, carboxymethylcellulose, 
and others are extensively used in conventional as well as controlled‐release tab-
let formulations. With the practical edge provided by nanocellulose in numerous 
functional properties being realized and appreciated, a few investigations have 
explored its potential as functional excipients in tablet formulations. The poten-
tial of spray‐dried cellulose nanofibers as novel tablet excipients was evaluated 
and compared against two commercial MCC, Avicel PH‐101 and Avicel PH‐102, 
which are the two most commonly used direct compression excipients [45]. 
Cellulose nanofibers were found to possess excellent compressibility and were 
amendable to both wet granulation and direct compression methods of tablet 
preparations. Cellulose nanofibers prepared through direct compression method 
showed faster disintegration and drug release showing its potential as direct 
compression excipients. Freeze‐dried CNC prepared from water sugarcane 
bagasse was also shown to enhance the dissolution of diltiazem hydrochloride 
tablets prepared with the nanocellulose [46].

Disintegrants are added into tablet formulations to ensure that the tablet 
breaks up into fragments in the GI fluid tract to facilitate dissolution, which in 
turn results in enhanced bioavailability [47, 48]. Nanocrystalline cellulose was 
reported to exhibit two potentially advantageous properties when used as disin-
tegrant in calcium carbonate tablet preparation [49]. First is the reduced disinte-
gration time and second is the increased hardness, which was observed with 
increase in the nanocrystalline cellulose concentration in the tablet formulation, 
confirming its potential disintegrant property. Along with pectin and sodium 
alginate, CNCs are also used in the successful probiotic tablet preparation [50].

1.6  Aerogel Systems

Aerogels are lightweight materials with outstanding surface area and open porosity, 
suitable for high loading of active compounds [51]. They are nanoporous systems 
obtained from the wet gels or hydrogels through a suitable drying technology that 
keeps the porous texture of the wet material intact. Due to their weblike structure, 
high porosity, and high surface reactivity, aerogels prepared from nanocelluloses 
possess a high mechanical flexibility and ductility with ability for water uptake, 
which makes them an excellent candidate for the removal of dye pollutants, thermal 
insulation materials, and drug delivery system [52]. As a result, different types of 
nanocelluloses, due to their excellent and suitable properties, have become the sub-
ject of keen interest in the preparation of aerogels for drug delivery.

Freeze‐drying method was applied to prepare highly porous aerogels from 
nanofibrillar cellulose obtained from four different sources and compared with 
MCC as nanoparticulate oral drug delivery systems [53]. Release of the beclometh-
asone dipropionate drug nanoparticle integrated into the aerogel system was found 
to be quick and immediate for red pepper‐based aerogel and MCC, while BC, 
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quince seed (QC), and TEMPO‐oxidized birch cellulose‐based (TC) aerogels show 
sustained drug release. A controlled release of the drug was achieved, which was 
modulated by the interactions between the drug nanoparticles and the cellulose 
matrix, making it a promising carrier for controlled drug delivery.

Three different systems such as hydrogels, aerogels, and films of CNFs were pre-
pared and functionalized with silver nanoparticles through the interaction of the 
negatively charged CNFs, obtained by TEMPO oxidation method and the positively 
charged silver, Ag+ [54]. A stiff hydrogel was formed after the reaction, which was 
free‐dried to obtain the aerogel with a potential for drug delivery applications.

1.7  Hydrogels

Hydrogels are prepared by cross‐linking of polymer chains through the interac-
tions that may be of ionic, physical, or covalent, having the ability to absorb water 
[55]. Hydrogels swell in water but do not dissolve in it. Due to their ability to dis-
play sol–gel transitions that can be induced by a slight changes in the environmen-
tal conditions such as temperature, pH, ionic strength, phase separation, wavelength 
of light, crystallinity, and others, smart polymeric hydrogels are extensively used in 
biomedical fields such as in the development of controlled‐release drug delivery 
systems, tissue engineering, and regenerative medicine [56]. Several smart hydro-
gels such as injectable hydrogels [57], shape‐memory bacterial nanocellulose 
hydrogels [58], supramolecular hydrogels [59], double‐membrane hydrogels [60], 
temperature‐sensitive hydrogels [61], and many others with potential for drug 
delivery have been developed, which were based on nanocellulose.

PNs from natural sources such as CNCs, chitin whiskers, and starch nanocrys-
tals have been shown to impart pH sensitivity to sodium alginate microparticle 
hydrogels, thereby exhibiting a pH‐dependent drug release [38]. About 12 h of 
drug release was achieved, and the drug was released through diffusional trans-
port mechanism. A biocompatible double‐membrane hydrogel was also devel-
oped based on CNCs and sodium alginate for controlled drug delivery of two 
drugs [60]. Two drugs, ceftazidime hydrate and human epidermal growth factor, 
were incorporated into the first and second membranes, respectively (Figure 1.5). 
Controlled release lasting form more than 6 days was achieved for the incorpo-
rated drugs. A supramolecular hydrogel prepared through the in situ host–guest 
inclusion complex between modified CNCs and β‐CD was prepared with plu-
ronic polymer for drug delivery [59]. Doxorubicin hydrochloride was taken as a 
model drug for studying the drug release behavior. Drug release was extended 
over 7 days, and when the release curves were fitted into Ritger–Peppas equa-
tion, a special drug release mechanism was observed. The study showed that 
with a neat pluronic/α‐CD‐Dox hydrogel system, drug release follows Fickian 
diffusion, but the in situ CNCs/CD‐pluronic‐Dox hydrogels were found to 
exhibit an anomalous transport release mechanism.

Hydrophilic and high biocompatible bacterial nanocellulose was investigated 
for its potential in controlled delivery taking serum albumin as a model drug [62]. 
The model drug was loaded into both never‐dried bacterial nanocellulose hydro-
gel and the free‐dried, re‐swellable sample. Both the samples showed controllable 
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Table 1.2 Drug release mechanism.

Nanocellulose type Dosage form Drug release mechanism

CNC–alginate Microspheres
Hydrogel microparticle

Diffusional transport [38]
Diffusional transport [38]

CNC–chitosan Microspheres Fickian diffusion [39]
Cellulose nanofibers Self‐assembled First‐order model [40]
CNFs (spray dried) Matrix microspheres Diffusion, but differ as per the drug [41]
Dissolved cellulose Beads Diffusion‐controlled release [43]
Spray‐dried CNF Tablets Fast drug release, fast disintegration [45]
CNC–β‐cyclodextrin Supramolecular  

hydrogel
Fickian diffusion [59]

Bacterial nanocellulose Hydrogel Diffusion and swelling [62]

loading and release of the drug, and when drug release was fitted into Ritger–
Peppas equation, an overlay of diffusion and swelling controlled processes was 
observed. The same group had also evaluated the potential of shape‐memory 
three‐dimensional (3D) bacterial nanocellulose structures for drug delivery [58]. 
The re‐swelling behavior was found to be influenced by the tested additives such 
as magnesium chloride, glucose, sucrose, sorbitol, trehalose, lactose, mannitol, 
polyethylene glycol, and sodium chloride. The drawback that bacterial nanocel-
lulose suffers after simple air‐drying technique was solved in a simple manner by 
incorporation of the above additives. The characteristic fast release of the incor-
porated red dye azorubine was observed with the control air‐dried bacterial 
nanocellulose as about 98% of the drug was released within the first hour. However, 
after modification of the nanocellulose with the hydrophilic additives, controlled 
re‐swelling and drug release over a prolonged times could be achieved (Table 1.2).

CNF–gelatin structure for controlled release of nanocurcumin to be used 
for  wound dressing and antimicrobial applications was developed through a 

SA 1.5 wt%

Mixture

CCNC 0.15 wt%

SA+CCNC sol SA 1.5 wt%

(a)

(b)

Single-membrane
microsphere

Double-membrane
microsphere

1 mm

1 mm

Ca2+ cross-linking Ca2+ cross-linking

Figure 1.5 Preparation routine of single‐membrane and double‐membrane microsphere 
hydrogels; optical microscope images of (a) the SA/CCNC single‐membrane microsphere 
hydrogel and (b) the SA/CCNC‐1h double‐membrane microsphere hydrogel. (Lin et al. 
2016 [60]. Reproduced with permission of American Chemical Society.)
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green  process [63]. CNF–gelatin system impregnated with nanocurcumin was 
reported to be superior in its antimicrobial activity against Escherichia coli and 
Staphylococcus aureus when compared with the non‐formulated curcumin‐
impregnated structure. Nontoxic, injectable, and biodegradable hydrogels capa-
ble of higher nanoparticle loading was were developed using CNCs as reinforced 
fillers, which have great potential in drug delivery applications [57]. Bacterial 
nanocellulose–alginate hydrogels were also investigated for encapsulation of cells 
in biomedical  engineering [64].

1.8  Nanocellulose in Transdermal Drug Delivery

Delivery of drugs through the skin offers several advantages over other routes 
including elimination of first‐pass metabolism, minimization of pain, prolonged 
release of the drug, and the potential to terminate drug absorption by removing 
the patch from the skin [65]. Nanocellulose, especially bacterial cellulosic 
sources, has attracted a great deal of interest in the development of controlled 
transdermal drug delivery and wound healing preparations [66–69].

Bacterial nanocellulose‐based 3D network was fabricated for controlled transder-
mal delivery of berberine [66]. A significant extension of drug release was achieved 
even when compared with the commercially available system (Figure  1.6). Drug 
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Figure 1.6 Influence of medium composition on the release from F5 and F10 membranes of 
BC–berberine hydrochloride at 37 °C. The inset graph is an enlarged view from 0 to 2 h. Each 
data point is the average of six experiments ± standard deviation. (Huang et al. 2013 [66]. 
Reproduced with permission of Royal Society of Chemistry.)
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release showed pH dependence, with diffusion being the most prominent drug 
release mechanism. An active wound dressing system based on bacterial nanocel-
lulose was also developed, which was impregnated with an antiseptic drug, octeni-
dine [68]. The system was found to possess physicochemical strength, high 
biocompatibility, and properties suitable for transdermal drug delivery. It also dem-
onstrated antimicrobial activity against S. aureus and remains biologically active 
over a period of 6 months. A highly biocompatible system with good antiseptic 
property was also prepared by impregnating bacterial nanocellulose with polyhexa-
nide and povidone‐iodine [69]. Drug release was found to depend on diffusion and 
swelling. Bacterial nanocellulose has also been investigated for controlled transder-
mal delivery of other drugs such as diclofenac sodium [70, 71], and they may also be 
physically modified using methods such as gamma irradiation treatment [67] for 
transdermal applications.

A few research works on CNCs for transdermal delivery have also been dedi-
cated in recent years. A transdermal delivery system for hydroquinone was 
developed to inhibit the production of melanin and prevent discoloration of the 
skin [72]. CNCs were prepared by sulfuric acid hydrolysis, and drug loading was 
done through complexation method, yielding particle size of about 310 nm. 
Sustained release of hydroquinone was achieved with 80% of the bound drug 
released in 4 h. A biocompatible and biodegradable transdermal carrier for pro-
caine hydrochloride delivery was prepared using chitosan‐functionalized oxi-
dized CNCs [73]. At pH 8, a fast release of the drug in 1 h was obtained.

1.9  Conclusion

Nanocellulose in different forms obtained from various sources has been widely 
investigated as controlled drug delivery vehicle. Even though it was isolated way 
back in 1949, CNCs and other nanocellulosic forms have received interest in 
drug delivery only in the last few years. Their biocompatibility, biodegradability, 
and exceptional physicochemical properties definitely made them an excellent 
candidate in a wide range of biomedical applications. The reports available at 
present indicate that nanocelluloses possess the required biocompatibility and 
biodegradability criteria for the development of different pharmaceutical dosage 
forms. Investigations of different nanoparticulate preparations based on nano-
cellulose indicate that they interacted well with the cells and the cellular uptake 
mainly takes place through endocytosis. Evaluation of drug release from such 
controlled delivery system shows that drug release is mainly diffusion dependent 
and prolonged drug delivery can be achieved through proper formulation 
development.
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