
2015 International Symposium on Advanced Computing and Communication (ISACC)

Automatic Brain Tumor Segmentation in MRI:
Hybridized Multilevel Thresholding and Level Set

Malsawm Dawngliana
Department of IT,
Assam University,

Silchar, India
mschhangte@gmail.com

Daizy Deb
Department of IT,
Assam University,

Silchar, India
daizydebkar@gmail.com

Abstract- Segmentation of tumor from magnetic resonance

image (MRI) brain images is an emergent research area in the

field of medical image segmentation. As segmentation of brain

tumor plays an important role for necessary treatment and

planning of tumor surgery. However, segmentation of the brain

tumor is still a great challenge in clinics, specially automatic

segmentation. In this paper we proposed hybridized multilevel

thresholding and level set method for automatic segmentation of

brain tumor. The innovation for this paper is to interface the

initial segmentation from multilevel thresholding and extract a

fine portrait using level set method with morphological

operations. The results are compared with the existing method

and also with radiologist manual segmentation which confirm the

effectiveness of this hybridized paradigm for brain tumor

segmentation.

Keywords- Magnetic Resonance Imaging(MRI), Brain tumor,

nmltilevel thresholding, level set method, medical image processing.

I. INTRODUCTION

Brain is built up of numerous types of cells. These cells
typically grow and divide in a self-restrained and formal
manner to produce new cells. Worthlessly, new cells continue
to produce which lead to a mass of extra tissue called brain
tumor. Brain tumor can be benign (not cancerous) or
malignant (cancerous), the cells of malignant tumors are
abnormal and divide numerously, nearby cells will be attack
and damage the healthy adjacent tissues.

Modem technology does not provide information about
tumor observation and pattern, judgment of lesion is still
carried out manually. The main disadvantages of manual
segmentation are: it is time consuming and fully rely on
human decision. According to the population and the number
of patients, manual judgment is bulky in everyday clinic and
led to human errors. Therefore development of tools for
automatic judgment of lesion is a demand in today's senario.

To overcome these problems, automatic brain tumor
segmentation was proposed by Singh,P [I] for initial
segmentation, FCM algorithm is employed which cluster the
MRI brain image, from these clusters the desired cluster must
be selected manually for automatic initialization. Hence one

978-1-4673-6708-0/15/$31.00 ©20 15 IEEE

Mousum Handique
Department of IT,
Assam University,

Silchar, India
mousum78@yahoo.co.in

Sudipta Roy
Department of IT,
Assam University,

Silchar, India
sudipta.it@gmail.com

can say that it is not fully automatic as human intervention is
involved. The selected cluster is taken as input for levelset
method, which segment the tumor part without the need of re
initialization. If the initial segmentation is automated, it will
give fully automatic segmentation method.

In medical image segmentation, classical thresholding
plays an important role as it separate the object from the
background using simple intensity value variation, it separate
the image into two groups according to threshold value [2].
Natarajan,P [3] employs classical thresholding operation with
morphological operation for automatic brain tumor detection,
in this approach, the threshold value must be adjusted
manually depending upon the input image intensity. Classical
thresholding is not effective for initial medical image
segmentation due to the presence of uneven intensity
variation in an image.

Multilevel thresholding using type-II fuzzy sets was
proposed by Ritambhar Burman [4]. This multilevel
thresholding can segment an image into number of groups,
which will make thresholding more robust for initial
segmentation in medical images. Hence, a hybridized
technique for fully automatic brain tumor segmentation is
proposed in this paper which make use of multilevel
thresholding based on image intensity for initial segmentation
and level set method for refmement of tumor based on image
boundary variation.

This paper is organized as follows. The background work is
discussed in section II. The proposed method is discussed in
section III which starts with a flowchart of the proposed
technique. Experimental results and performance evaluation of
our proposed method and existing method is illustrated In
section IV, followed by the conclusions in section V.

II. BACKGROUND WORK

By using just a powerful magnetic field and radio
frequency pulses MRI operates, which gives input to a
computer which produce detailed image of organs, soft tissues
and bones. Detailed MR images allow physicians to evaluate

Lecture Notes in Electrical Engineering 475

Siddhartha Bhattacharyya
Tapan Gandhi · Kalpana Sharma
Paramartha Dutta
 Editors

Advanced
Computational and
Communication
Paradigms
Proceedings of International Conference
on ICACCP 2017, Volume 1

Mixing Test Set Generation for Bridging
and Stuck-at Faults in Reversible Circuit

Mousum Handique(B) and Joinal Ahmed

TSSOT, Department of Computer Science and Engineering, Assam University,
Silchar 788011, Assam, India

mousum78@yahoo.co.in, joinalahmed@gmail.com

1 Introduction

The reversible circuit technologies are more promising future alternative as com-
pared to conventional circuit technologies in the scenario of high-performance
computation. Rolf Landauer [1], 1961, showed that whenever using a logically
irreversible operation, it dissipates energy into the environment. The reversible
logic operations are those operations which can reuse a fraction of the signal
energy that theoretically can approach near to 100%. Therefore, the reversible
logic circuit is the most popular technology to achieve this performance. The
properties of the reversible circuit are simpler than a conventional circuit.
The basic properties of reversible circuits are (a) number of inputs are equal
to the number of outputs, (b) only bijection operation is allowed, and (c) no
fanout and feedback connection is allowed.

Due to the reversibility property, the efficient test pattern generation of a
reversible circuit is relatively simpler than the traditional logic circuit. The other
facet of the reversible circuit is that it has produced unique output vector from
each corresponding input vector and vice versa, which gives high controllability
and observability [2]. A test set is a collection of the input test vectors which are
applied to a reversible circuit to detect and observe that the faults are occurred
in the circuit. The test set is called as complete test set if it is capable of detecting
all the faults in a given circuit. The relation between different fault models of
the reversible circuit has been discussed in [3]. This paper has drawn parallels
between the bridging and stuck-at faults for generating the test patterns. The
test vectors that set the two lines by the opposite logic values “01” and “10” are
used to detect the two lines of bridging faults at the same level [4]. In other way,
for detecting the stuck-at faults at any level, the lines at every level are set by 0
and 1. Generated complete test set for individual fault model is already in the

c� Springer Nature Singapore Pte Ltd. 2018
S. Bhattacharyya et al. (eds.), Advanced Computational and Communication
Paradigms, Lecture Notes in Electrical Engineering 475,
https://doi.org/10.1007/978-981-10-8240-5_11

102 M. Handique and J. Ahmed

literature but “generated test patterns for one particular fault model is derived
such that it is capable of detecting another fault model” is our key concern. Based
on this concept, we have generated the test patterns for the input bridging faults
and further reconstructed the test vectors for the input stuck-at faults which are
obtained from bridging fault model.

The rest of the paper is organized as follows: Sect. 2 provides some basic
background on reversible logic circuits and an overview of stuck-at and bridg-
ing fault model in the reversible circuit. Sect. 3 describes our proposed method
for generating the test set for detecting input bridging and stuck-at faults. The
experimental result and conclusion are provided by Sect. 4 and Sect. 5, respec-
tively.

2 Background

2.1 Reversible Logic Circuits

A reversible logic circuit is used to implement the reversible computation and
it is formalized in terms of gate-level circuits. The reversible circuit structures
are cascade structure [5]. All the operation of the reversible circuit has to be
performed in a reverse form. The reversible circuit allows only bijective oper-
ations [2] and maintained the bijective operation; the circuit does not include
any concept of fan-out and feedback connection [6]. In reversible circuit design,
several gates have proposed over the past decades. They are the controlled NOT
(CNOT) proposed by Feynman [7], Toffoli [8], Fredkin and Toffoli [9], etc. In this
paper, we are using only NCT library that contains NOT, CNOT, Toffoli gate,
and GT library containing generalized (n-bit) Toffoli gate. This NCT library was
introduced by Toffoli [8] in 1980.

2.2 Fault Models in Reversible Circuit

A fault model has described the different levels of abstraction of physical faults
in a system. These levels of abstraction can be defined as behavioral, functional,
structural, and geometric [4]. A fault model is a mathematical model which rep-
resents various faults possibilities and it helps to generate the tests for detecting
and reducing all the possible faults in a given circuit [3]. Numerous fault models
have been introduced in the reversible circuit. In this work, we have considered
stuck-at fault and bridging fault model in the reversible circuit.

1. Bridging Faults in a Reversible Circuit: The bridging faults occur when
two signals are connected together but they should not be. If two or more lines

Mixing Test Set Generation for Bridging and Stuck-at Faults 103

involved in bridging faults, then logical effects of this faults are categorized
by wired-OR or wired-AND bridging faults [4]. The single-input bridging
faults occur, if two input lines are operated by the opposite logic values [10].
Sarkar and Chakrabarti [11] proved that if any test set is complete for the
single-input bridging faults, then that particular test is also completed for
detecting the multiple-input bridging faults. The authors also showed that
the generated test sets are capable of detecting all the possible single- and
multiple-input bridging faults if generated test sets are eligible for detecting
all the single-input stuck-at faults in a given reversible circuit.

2. Stuck-at Faults in a Reversible Circuit: The stuck-at faults occur in a
circuit when one of its inputs and outputs to be fixed at either logic value 0
(stuck-at-0) or logic value 1 (stuck-at-1) without considering the input value.
This is a very common fault model used for irreversible circuits. If the stuck-at
fault is involved only for one line in the circuit, then it is called as the single
stuck-at fault (SSF), and if stuck-at fault is involved more than one line, then
it is called as multiple stuck-at faults (MSF). Patel et al. [2] stated that any
test set is complete for detecting the stuck-at faults, if and only if each line
at every level can be set to both 0 and 1 by the test sets. The paper [2] also
showed that the test set is complete for all single stuck-at faults, and then it
also becomes complete test set for all multiple stuck-at faults.

Fig. 1. ATPG and FDL flow

104 M. Handique and J. Ahmed

3 Proposed Method

We have divided into two modules in our method. The first module described the
test pattern generation of single-input bridging faults. After generating the test
patterns, we have derived these patterns for further use of single-input stuck-at
faults. Also, we have introduced fault description list (FDL) in our work. The
detailed discussion has been given below.

3.1 Fault Description List

Fault description list contains all the possible faults which are generated by the
test vectors based on the position of the binary bit sequence present in that test
vector. Using the fault description table, we have checked that which test vector
is covered by a maximum number of faults and combined the minimum number
of test vectors such that it covers all the possible faults in the given reversible
circuit.

The construction of ATPG and fault description list (FDL) flow is shown
in Fig. 1. In Fig. 1, step (a) extracts all the possible single-input bridging and
stuck-at faults in the given reversible circuit. Step (b) generated all the possible
test pattern from our proposed method (ATPG). All the faults are stored in the
fault list which is generated by test pattern mentioned in step (c). In step (d),
each individual test pattern of corresponding faults adds to the test set. Now,
we have checked that fault list is covered all the faults, if not then take another
combination of test patterns and continue the same process. If some selected test
set is able to cover all the faults, then that test set is the final one for detecting
all the faults; it has mentioned in step (e) and also this test set is minimized
form because the combination of test vectors is growing in increasing order.

3.2 Test Set Generation Algorithm for Single-Input Bridging Fault

In this section, we have arranged our proposed method into two algorithms.
Algorithm 1 has explained initially how to extract all the test vectors (TV)
based on the bridging faults property. To obtain the binary bit sequences, we are
starting from n = 3, where n is the number of input lines of the reversible circuit.
In Algorithm 2, the FDL has ensured that which test vector(s) is capable of
detecting all single-input bridging faults (l1, l2), (l1, l3) . . . (li, lj), where i < j ≤ n

Mixing Test Set Generation for Bridging and Stuck-at Faults 105

and (li, lj) ∈ FBi
in the given circuit. Finally, select the minimized fault detecting

test set TB of N number of input lines in a reversible circuit.

Algorithm 1: Extracting the TV from bridging fault property
Input: S is the set of all binary sequences of 3-input lines.
Output: T is minimized form of test vectors (TV).
Step 1: List out all the opposite logic value of two-bit binary sequence
for n=3 from set S and P is the set of opposite logic values.
Step 2: Assign ‘X’ at missing bit position in P and replaced X by 0 and 1.
Step 3: P with duplicate terms then removes until no duplicate terms are
exist and then remove complement terms at P.
Step 4: P is the set of final minimized binary sequences and T← P.
Step 5: return T.

Algorithm 2: Complete test set generation for detecting single input
bridging faults
Input: A set of test vectors T from Algorithm 1.
Output: Final minimized fault detecting test set TB using FDL.
Step 1: Compute TB , initially empty.
Step 2: All the faults FB1 ,FB2 , FB3 FBi

are assigned to FB in a
given n-input reversible circuit.
Step 3: Each test vector of T is identified single input bridging faults FB

using the binary bit position.
Step 4: FDL stores the information of each fault identified by TV in T.
Step 5: Choose the increasing order combination of test vectors in T.
Step 6: If T is cover all the faults FB using FDL then TSB ← T and
return TB, otherwise continue from Step 5 until covers all the faults.
Step 7: Update the value of n = 4, 5, 6,
Step 8: Appending the “0” or “1” at the LSB of each test vector in TB .
Step 9: T ← current TB for n-input lines.
Step 10: Continue the same process from Step 2.

Lemma 1. Detecting single- and multiple-input bridging faults in a given n-
input reversible circuit, the (�n/2�) number of test vectors are sufficient.

Proof. Here, each of the input lines can be set to both opposite logic values 0
and 1. The test vector TVi=(�b0i b1i b2i . . . b(n−1)i�), where 1 ≤ i ≤ �n/2�,
b(n−1)i is the (n−1)th bit of ith test vector and b(n−1)i ∈ {0, 1}. As explained in
Algorithm 1, the test set T={TV1, TV2, TV3} is the test set for n = 3-input lines

106 M. Handique and J. Ahmed

(initially) in the given reversible circuit, where no duplicate and complement
test vectors are present. The total single-input bridging faults are C(n, 2) = 3 in
the three-input reversible circuit. In the binary bit position for three-input lines,
any one of the test vectors is capable of detecting the number of faults C(n, 2)/2
or more than C(n, 2)/2 of the total faults but only one test vector is unable to
detect all the faults. Because at least one logic value for each test vector is similar
to the other logic value, to maintain the opposite logic value for each test vector,
the test set TB has exactly produced �n/2� test vectors. Therefore, according
to Algorithm 2, we formed the test set TB = {TV1, TV2} that is capable of
detecting all the faults in the given three-input reversible circuit. If we go for
(n + 1), i.e., four-input lines in the reversible circuit, then adding extra input
line is created new faults (l1, l4), (l2, l4), (l3, l4). For detecting new faults, we are
adding 0 or 1 to the least significant bit (LSB). We have only checked the new
form of faults because existing faults are automatically covered by the existing
test vector (for n = 3). Hence, �n/2� test vectors are required to detect all the
single-input bridging faults.

3.3 Test Set Generation Algorithm for Single-Input Stuck-at Fault

In this section, we have introduced our algorithm for detecting single-input stuck-
at faults. Algorithm 3 extracted the test set TB which is derived from the single-
input bridging fault model and generated the final test set TS for detecting the
single-input stuck-at faults.

Algorithm 3: Test set generation for detecting single input stuck-at faults
Input: TB is the current test set obtained from Algorithm 2.
Output: Test set TS for detecting single input stuck-at faults.
Step 1: Compute test set TS , initially TS = TB .
Step 2: All faults FS1 , FS2 , FS3 , . . . , FSi

of the given circuit assign to FS .
Step 3: FDL stores the information of each fault identified by the TS .
Step 4: If TS is covered all the faults of FS from FDL then return TS

else goto next Step.
Step 5: Complement of any one test vector of TS and update TS with
adding new complement test vector and goto Step 3.

Lemma 2. Detecting all the single- and multiple-input stuck-at faults in a given
n-input reversible circuit, the (�n/2�) + 1 number of test vectors are sufficient
enough.

Proof. In Lemma 1, it has proved that test set TB = {TV1, TV2} is capable of
detecting all the single-input bridging faults in three-input reversible circuit. Any
combination of test vectors (excluding complement of test vector), at least one-
bit position, is occurred with same logic value. Due to this fact, it is unable to
cover either one (or more) stuck-at-0 or stuck-at-1 fault(s). If we are introducing
new test vector which is the complement of any test vector (e.g., TV1 or TV2),

Mixing Test Set Generation for Bridging and Stuck-at Faults 107

then that bit position of complement test vectors must occur at least one opposite
logic value. Therefore, extra one more test vector is needed for detecting the
single-input stuck-at faults in our proposed method, i.e., the test has required
exactly (�n/2�) + 1 number of test vectors.

Example 1. Consider the reversible benchmark circuit ham3 consisting of three-
input and three-output lines as shown in Fig. 2a. The number of single-input
bridging faults is C(3, 2) = 3. Algorithm 1 generated the minimized test vectors
in T = {001, 010, 011}. Then, using Algorithm 2, the final minimized test set
TB = {001, 010} with the help of FDL, which is the complete test set in a ham3
benchmark circuit for detecting the input bridging faults. In this circuit, the total
numbers of single-input stuck-at faults are 3 × 2 = 6. It has observed that the
test set TB is not capable of capturing all the single-input stuck-at faults. Hence,
we apply Algorithm 3 and generated the complete test set TS = {001, 010, 110},
where “110” is the complement form of “001”. The test set TS covered all the
possible single-input faults in ham3 benchmark circuit.

Example 2. In this example, we are considering mpsk 4 49 13 reversible bench-
mark circuit consisting of four-input and four-output lines as shown in Fig. 2b.
The number of input bridging faults is C(4, 2) = 6. The Step 9 in Algorithm 2
generated the minimized test set TB = {0011, 0101} with the help of FDL,
which is the complete test set for detecting the single-input bridging faults in a
mpsk 4 49 13 benchmark circuit. Now if we consider the single-input stuck-at
faults of this circuit, then a total number of single-input stuck-at faults occur
4×2 = 8. Similarly, the test set TB is not capable to detect all the input stuck-at
faults. Therefore, Algorithm 3 is generated the test set TS = {0011, 0101, 1100},
where “1100” is the complement form of “0011”. The test set TS is the complete
test set for detecting single-input stuck-at faults in mpsk 4 49 13 benchmark
circuit.

Fig. 2. a ham3 benchmark circuit b mpsk 4 49 13 benchmark circuit

4 Experimental Results

The proposed algorithms are generating the mixing test vectors applied to var-
ious reversible benchmark circuits [12] with NCT and GT models. The test
sets are generated by our proposed method that is compared with the existing
method [11] which is shown in Table 1. It has observed that the proposed method
gives good performance in both the fault models and also covered 100% faults.

108 M. Handique and J. Ahmed

T
a
b
le

1
.
D

et
ec

ti
o
n

o
f
in

p
u
t

fa
u
lt

s
(B

F
=

in
p
u
t

b
ri

d
g
in

g
fa

u
lt

s
a
n
d

S
A

F
=

in
p
u
t

st
u
ck

-a
t

fa
u
lt

s)

B
en

ch
m

a
rk

ci
rc

u
it

s
G

a
te

m
o
d
el

N
o
.
o
f

in
p
u
t/

o
u
tp

u
t

N
o
.
o
f
in

p
u
t

st
u
ck

-
a
t

fa
u
lt

s
N

o
.
o
f
in

p
u
t

b
ri

d
g
in

g
fa

u
lt

s
N

o
.
o
f
te

st
v
ec

to
rs

[1
1
]

N
o
.
o
f
te

st
v
ec

to
rs

[P
ro

p
o
se

d
]

%
fa

u
lt

co
v
er

a
g
e

[P
ro

p
o
se

d
]

B
F
+

S
A

F
B

F
+

S
A

F
B

F
+

S
A

F

3
1
7

N
C

T
3
/
3

6
8

3
3

1
0
0

6
sy

m
N

C
T

6
/
1

1
2

9
0

6
4

1
0
0

9
sy

m
N

C
T

9
/
1

1
8

3
5
2

9
6

1
0
0

h
w

b
7

G
T

7
/
7

1
4

1
5
2

7
5

1
0
0

h
w

b
8

G
T

8
/
8

1
6

2
3
8

8
5

1
0
0

h
w

b
6

G
T

6
/
6

1
2

9
0

6
4

1
0
0

rd
7
3

N
C

T
7
/
3

1
4

1
5
2

7
5

1
0
0

rd
8
4

N
C

T
8
/
4

1
6

2
3
8

8
5

1
0
0

h
a
m

7
G

T
7
/
7

1
4

1
5
2

7
5

1
0
0

h
a
m

1
5

G
T

1
5
/
1
5

3
0

1
8
4
8

1
5

9
1
0
0

m
o
d
1
0
2
4

A
d
d
er

G
T

2
0
/
2
0

4
0

4
5
9
8

2
0

1
1

1
0
0

m
o
d
1
0
4
8
5

7
6

a
d
d
er

G
T

4
0
/
4
0

8
0

2
1
2
2
2

4
0

2
1

1
0
0

Mixing Test Set Generation for Bridging and Stuck-at Faults 109

5 Conclusion

This paper observed that there is a close relation between stuck-at and bridging
faults in the reversible circuit. This paper concludes that (�n/2�) test vectors are
generated at first for detecting the input bridging faults and reconstructed the
test vectors from the bridging fault model such that adding only one test vector
is sufficient to detect input stuck-at faults in the n-input reversible circuit. There
will be a possibility to design a technique such that similar type of test vectors
can be detected which may be some other fault models. This may lead to the
future work.

References

1. Landauer R (1961) Irreversibility and heat generation in the computing process.
IBM J Res Dev 5(8):183–191

2. Patel KN, Hayes JP, Markov IL (2004) Fault testing for reversible circuits. IEEE
Trans Comput Aided Design Integ Circuits Syst 23(8):1220–1230

3. Rice J (2013) An overview of fault models and testing approaches for reversible
logic. In: 2013 IEEE pacific rim conference on communications, computers and
signal processing (PACRIM). IEEE, pp 125–130

4. Jha NK, Gupta S (2003) Testing of digital systems. Cambridge University Press
5. Maslov D (2003) Reversible logic synthesis. PhD Dissertation, University of New

Brunswick
6. Nielson MA, Chuang IL (2000) Quantum computation and quantum information.

Monograph Collection (Matt-Pseudo)
7. Feynman RP (1986) Quantum mechanical computers. Found Phys 16(6):507–531
8. Toffoli T (1980) Reversible computing. Springer
9. Fredkin E, Toffoli T (2002) Conservative logic. Springer

10. Rahaman H, Kole DK, Das DK, Bhattacharya BB (2007) Optimum test set for
bridging fault detection in reversible circuits. In: 16th Asian test symposium,
ATS07. IEEE, pp 125–128

11. Sarkar P, Chakrabarti S (2008) Universal test set for bridging fault detection in
reversible circuit. In: 3rd international design and test workshop, IDT 2008. IEEE,
pp 51–56

12. Maslov D, Dueck G, Scott N (2005) Reversible logic synthesis benchmarks page

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 125 (2018) 801–809

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and Communications
10.1016/j.procs.2017.12.102

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications

Keywords: Transformation-based, Template matching, k-CNOT/FREDKIN/SWAP gate, FREDKIN/SWAP gate.

1. Introduction

Reversible logic computation has received great attention in the recent years due to the ability of reversibility. It has
performed the operation in a reversible manner if it has followed by the three properties: (a) the first property is that
for any deterministic device to be reversible, then its input and output be uniquely retrievable from each other, (b) the

∗ Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000.
E-mail address: mousum.smit@gmail.com

6th International Conference on Smart Computing & Communications 2017

A modified Transformation-Template based Synthesis using
FREDKIN/SWAP Gates in Reversible Circuits

Mousum Handique, Rijumoni Singha

Department of Computer Science Engineering, Triguna Sen School of Technology,

Assam University, Silchar-788011, Assam, India

Abstract

Reversible logic computing is an emerging research area due to its high-speed computing abilities and generating the lossless
information. Due to the ability of reverse operation and high-speed computing performance, reversible computation is considered
as a future alternative to the conventional computing. The rapid progress of reversible computation in the current scenario, the
reversible circuit is the way to solve this type of computation. Moreover, the reversible circuit computation is the higher level
abstraction of the quantum circuit. The synthesis design of these circuits is an important aspect in the current literature. In this paper,
we present our work in the field of synthesis design of a reversible circuit. In this work, we propose a modified transformation-
based synthesis design using the FREDKIN/SWAP gate to reduce the quantum cost and minimizing the number of gates. To
obtain this synthesis design approach, we have introduced some new templates which are defined by rules of replacing the k-
CNOT/FREDKIN/SWAP gates using a template matching approach. Here, we are considering only k-CNOT (k ≥ 1), FREDKIN
and SWAP based gate in our templates. Finally, we provide our experimental results based on different benchmark reversible
circuits. The experimental result has shown that the number of quantum cost and gate count are reduced using the FREDKIN/SWAP
gate in the transformation-based approach with the help of proposed templates.

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 125 (2018) 832–839

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and Communications
10.1016/j.procs.2017.12.106

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications

1. Introduction

Quantum computing shows a possible way of solving problems that are considered very hard for existing com-
puting paradigms. In quantum computation, the states of the machine are not limited to binary state 0 and 1 but the
superposition of these two states, known as qubits. Qubits are nothing but a microscopic system, such as an atom or
nuclear spin or polarized photon. Therefore, boolean states 0 and 1 are represented by a fixed pair of distinguishable
states of the qubit which can be expressed in the form of horizontal polarization | 0 >=↔ and vertical polarization
| 1 >=↑. Based on the qubits, the information is computed, as a result, it is capable to solve many problems such as
factorization, database search, graph problems and solving these type of problems with the help of quantum comput-
ing is significantly faster than with the conventional computing [2, 3, 4]. All the quantum operations are necessarily
reversible in nature [1]. Therefore, the mapping of the reversible circuit to its equivalent quantum circuit efficiently is
the area of keen interest.

∗ Corresponding author. Mobile.: +919435700703.
E-mail address: mousum.smit@gmail.com (Mousum Handique).

Keywords: Reversible circuit, Quantum circuit, NCT library, GT library, NCV library, NCV-|v1� library.

www.elsevier.com/locate/procedia
6th International Conference on Smart Computing & Communications 2017

An Extended approach for Mapping Reversible Circuits to Quantum
Circuits using NCV-|v1� library

Mousum Handique∗, Aayush Sonkar

Department of Computer Science Engineering, Triguna Sen School of Technology,

Assam University, Silchar-788011, Assam, India

Abstract

In recent years, quantum computing has gained a lot of importance due to its property of increasing computational power expo-
nentially. In the current literature, it has observed that the quantum computing has potential to solve many complex problems with
less complexity based on the theoretical analysis. But in contrast to hardware implementation of quantum technology, it expands in
a linear way. Moreover, there is a close relation between quantum computing and reversible computing. More precisely, quantum
computing operations are reversible. In this paper, we propose an extended approach of mapping flow for describing reversible
circuits to its equivalent quantum circuits. Here, we consider the reversible circuits of n-inputs and n-outputs with NCT and GT
library, which is mapped to the quantum circuits with the NCV-|v1� library. Finally, we provide our experimental results in terms
of quantum costs for mapping the reversible circuits to quantum circuits.

Minimal Test Set Generation for Input Stuck-at and
Bridging Faults in Reversible Circuits
Mousum Handique∗, Jantindra Kr. Deka†, Santosh Biswas‡ and Kamalika Dutta§

∗†‡Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
§National Institute of Technology Meghalaya, Shillong 677881, India

Email: {∗mousum,†jatin,‡santosh biswas}@iitg.ernet.in, §kdatta@nitm.ac.in

Abstract—Research in reversible computing has gained impor-
tance because of its potential use in low-power design, and also
quantum computing. Several works on reversible circuit testing
have also been reported. Many fault models have been proposed,
some of which have been borrowed from traditional logic. In
this paper, we consider the problem of reversible circuit testing,
specifically targeting test generation for stuck-at and bridging
fault models. It has been shown that �log2 N� number of test
vectors are necessary and sufficient for detection of all inputs
bridging faults of a reversible circuit with N inputs. Addition of
only one more test vector to an existing test set of single input
bridging faults can also detect all single input stuck-at faults.
Finally, we provide our experimental results to verify our claim,
and also show that the test size is smaller as compared to existing
methods.

Keywords—Reversible logic; Fault model; NCT library; GT
library; Test set.

I. INTRODUCTION

Information is the necessary part of every computing
system. In conventional digital circuits, number of input and
output lines can be different, which typically results in loss of
information and hence some mandatory power dissipation [1].
It has also been postulated [2] that if a circuit has to con-
sume zero power, it must be reversible. This has motivated
researchers to explore reversible logic as a circuit design
alternative. Reversible circuits implement a bijective mapping,
which requires the number of input and output lines to be
equal. This property allows us to deduce the inputs from the
outputs [3].

In the circuit design domain, the presence of manufacturing
faults is a major concern that may lead to physical failure of
the system. Even a single fault can cause large deviation in the
expected performance of a system. A fault model is generally
used to abstract the effects of physical failures and also helps
to simplify the complexity reducing the number of faults [4].
Various testing approaches for reversible logic circuits have
being proposed.

The generation of test patterns in a reversible circuit is
much simpler than conventional logic circuits because the
property of reversibility ensures high controllability and ob-
servability [5]. Because of this, backtracking that is considered
to be difficult for conventional circuits is straightforward
for reversible circuits. For every vector at the output of a
reversible gate, there exists a unique vector at the input. A
test set for detecting faults in a reversible circuit is said to
be complete if all possible faults under some assumed fault
model can be detected with the help of the test set. In [6],
the authors discussed the connection between various fault

models, particularly the single input stuck-at faults and the
bridging faults. The bridging faults between two lines at the
same level can be detected by a test vector that sets the two
lines to opposite logic values, i.e., 01 or 10, which was reported
in [4]. Stuck-at faults at any particular level also require lines
to be set to 0 or 1 to detect the faults at that level.

Various works have been reported in the literature [6], [7],
[8], [9] that address the generation of complete test sets based
on some fault model. In this context, a key focus of the present
work is deriving test patterns for a particular fault from the
generated test patterns for another fault model. Specifically, we
first generate the test patterns for single input bridging faults,
and then subsequently reconstruct the test vectors for detecting
single input stuck-at faults. The method produces a complete
test set, which is also the minimal test set for detecting both
single input bridging faults and single input stuck-at faults.

The paper is organized as follows: Section II introduces
some basic background of reversible gates specially targeting
the NOT, CNOT, Toffoli (NCT) and generalized (n-bit) Toffoli
(GT) gate library and also provides an overview of the relevant
fault models in reversible circuit. Section III describes our
proposed method for generating complete and minimal test set.
The experimental results are presented in Section IV. Finally,
concluding remarks are presented in Section V with some
possible directions for future works.

II. BACKGROUND

A reversible logic circuit realizes an n-input, n-output
function with no fan-out and feedback connections [10]. It can
be implemented by a linear cascade of reversible gates [11].
Several reversible gates have been proposed in the literature,
like controlled-NOT (CNOT) or Feynman [12], Toffoli [13],
Fredkin [14], PRES [15], TR [16], SWAP [17], etc. The most
commonly used gate library is the NCT library, consisting of
NOT, CNOT and Toffoli gates as shown in Figure 1. The NOT
gate is a single input gate that simply inverts the input. The
CNOT gate passes the first input as it is and inverts the second
input if the first input is 1. The Toffoli gate is a 3-input gate
that inverts the third bit if the first two bits are 1. The GT
library contains generalized multiple-control Toffoli gate. In
this paper, we have used the NCT and GT gate libraries.

A. Fault Models in Reversible Circuit

Traditionally, various physical faults that occur in a system
are modeled using some suitable fault models at different levels
of abstraction like behavioral, functional, structural, geometric,
etc. [4]. Fault models help to analyze faults and reduce the
complexity of generating test vectors [6]. In this work, we

Proc. of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, November 5-8, 2017

978-1-5090-1134-6/17/$31.00 ©2017 IEEE 234

Text Manipulation Using Regular Expressions
S. Biswas1, D.Sengupta2, R. Bhattacharjee3 and M. Handique4

1234Department of Information Technology, School of Technology
Assam University,Silchar-788011, India

email:mousum.smit@gmail.com

Abstract—In this paper we are proposing a proficient approach of using
flat files or synthetic files as database. Realizing that there are much of
disadvantages of using text file as a database, in this literature we are
striving to reduce some specific hindrances with the help of regular
expressions (regex). Regular expression is therefore an unbelievable
powerful language which is no longer just for the programmers rather
it is showing up in all sorts of places today. In this paper, we are using
regex to recommend a productive method of data or text manipulation
in the flat files. Hence an improved data manipulation procedure in the
text file can lay a huge impact in the path of upgradation of the flat file
system.

Keywords-Flat files, Synthetic files, Flat file system, Database,
Regex, Text Manipulation.

I. INTRODUCTION

In this recent technological world, we are all being accustomed
with all types of advanced techniques. Among all these advanced
techniques we have become quite aware about database management
system. By database system management we mean storing of data
which we can access whenever required. The importance of database
management system in modern business can never be avoided. Now-
a-days, if an organization has to choose for itself, then which database
will it be choosing? It will be opting for either Oracle, SQL Server,
Microsoft Access or MySQL, DB2, Paradox etc. But always the
extensive facilities provided by these databases are not required and
we can free ourselves from the additional work of database software
installation, knowing a query language etc. in that case flat files or
synthetic files may play an useful role as a database. A flat file or
text file is therefore a computer file that contains only text, italic
text, images etc. In this paper use of synthetic file is recommended.
A synthetic file is also a simple flat file or text file. The ‘synthetic’
here refers to- “any production of data applicable to a given situation
that are not obtained by direct measurement”. Flat files thus, if freed
from all its hindrances can be used as an elementary database system
which would then be extremely user and system friendly.
Certainly we are aware of the significant number of disadvantages
in the flat file system for it to be used as a database, which is then
known to be the sole purpose behind the conception of RDBMS.
One of its hindrance can importantly be the difficult search-replace
or manipulation of data. So, in this literature we are elaborating our
attempt of making this manipulation of text easier in the flat files
with assistance of the “regular expressions”. A regular expression
(abbreviated regex or regexp and sometimes called a rational expres-
sion) therefore is a sequence of characters that forms a search pattern,
mainly for use in pattern matching with strings, or string matching,
ie. “find and replace”- like operations [1]. The regular expressions
are hence capable of solving many real problems which will then be
illustrated in the later sections.
The rest of the paper is organized as follows- Section 2 states the
facts and definitions which are required to be in the knowledge of
the reader before proceeding to the further sections. Section 3 is the
depiction of the previous work done in the concerned field. Section 4
reveals our proposed flat file system architecture. Section 5 describes

the powerful search technique using the regex. Section 6 elaborates
our main work- illustration of the data manipulation techniques in
text file. Results are discussed in section 7 and finally conclusion
and future work is briefed in the section 8.

II. BACKGROUND

This section provides the basic concept necessary for understanding
the rest of the paper.

A. Basics of regular expression

In our attempt of making manipulation of text easier in flat files
regular expressions has played the main role. So, a brief summary
of the fundamentals of regular expressions is stated below. When
proceeding further, the reader should know definitions of some terms
that is required to understand the basics of regular expressions.
Definition 1
Literal : Any character that is used in a search or matching expression
is a literal, for example, to find inu in linux the inu is a literal string
where each character plays a part in the search, it is literally the
string we want to find. [2]
Definition 2
Metacharacter : One or more special characters having a unique
meaning which are NOT used as literals in the search expression
is a metacharacter [2] , for example, the character ˆ(circumflex or
caret) is a metacharacter.
Definition 3
Target String : This term interprets the string that we look for, that
is, the particular string in which we want to find our match or search
pattern. [2]
Definition 4
Search Expression : Popularly known as the regular expression [2].
The search expression is described by this term through which we
will be searching our target string, that is, the pattern used to derive
the required string.
Definition 5
Escape Sequence : When one of the metacharacters is to be used as a
literal it is indicated by the escape sequence. In a regular expression
an escape sequence involves placing the metacharacter \(backslash)
in front of the metacharacter that we want to use as a literal, for
example, if we want to find (s) in the target string window(s) then
we use the search expression \(s\) and if we want to find \\file
in the target string c:\\file then we would need to use the search
expression \\\\file (each \we want to search for as a literal (there
are 2) is preceded by an escape sequence \). [2]
Therefore the “regular expression is a sequence of the following: a
literal character, a matching character,character set,or character
class, a repetition quantifier, an alternation clause, a sub pattern
grouped with parentheses”.
The above mentioned terms can be explained as follows-

1) Matching Characters - When we say a regex .matches a string
we really mean that it matches in a string. Technically, the

2016 6th International Advanced Computing Conference

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/IACC.2016.22

60

2016 6th International Advanced Computing Conference

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/IACC.2016.22

60

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/IACC.2016.22

60

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/IACC.2016.22

62

2016 IEEE 6th International Conference on Advanced Computing

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/IACC.2016.22

62

