## **Faculty Details**

Name- Dr. Anupom Borah

**Designation**- Assistant professor

Department- Department of Life Science and Bioinformatics

**Phone**- +91-9531194100

Email- anupomborah@gmail.com

anupomborahh@gmail.com

**Year of Joining: 28-10-2009** 

Areas of Interest/Specialization: Biotechnology, Cellular and Molecular Neurobiology

**Experience** – 11 years

## **Education qualification:**

Post-doctoral research- DBT Overseas Associateship (2013-2014)

Dept. Of Neurology, University of Pittsburgh, USA

Ph.D. - Jadavpur University

M. Sc- Banaras Hindu University

Honours/Awards (National/ International): NET-JRF, GATE, DBT Overseas Associateship,

DBT-Rapid Grant for Young Investigator, DST- Young Scientist,

Member- Indian Academy of Neuroscience, Member- International Society for Neurochemistry

## **Research Projects:**

| SL | Title                                                          | Sponsored      | Duration  |
|----|----------------------------------------------------------------|----------------|-----------|
|    | Investigating the molecular basis of anti-parkinsonian effects | Department of  |           |
| 1. | of Garcinol - a phytoconstituent of Garcinia sp. in animal     | Biotechnology, | 2017-2020 |
|    | model of Parkinson's disease                                   | Govt. of India |           |
|    | Identification and structural characterization of              | Department of  |           |
| 2  | mitochondrial DNA Primase in <i>Leishmania donovani</i>        | Biotechnology, | 2018-2021 |
|    | mitochonditai DNA Finnase in Leisnmania uonovani               | Govt. of India |           |
|    | Molecular mechanism underlying neurotoxicity of L-DOPA-        | Department of  |           |
| 3  | induced endogenous molecules in Parkinson's disease-           | Biotechnology, | 2013-2017 |
|    | Effects of antioxidants                                        | Govt. of India |           |
|    |                                                                | Department of  |           |
| 4  | Effect of dietary restriction on the medication and            | Science and    | 2014-2018 |
| 4  | pathophysiology of Parkinson's disease                         | Technology,    | 2014-2018 |
|    |                                                                | Govt. of India |           |
|    | Effect of hypercholesterolemia on brain function: Effect of    | Department of  |           |
| 5  | indigenous plants component of North-East India                | Biotechnology, | 2011-2015 |
|    | mulgenous plants component of North-East mula                  | Govt. of India |           |



| Sl.<br>No | Indexed           | Title of the paper                                                                                                                                                                      | Name of the<br>Journal               | Volume,<br>issue &<br>page nos.              | Year | Impact<br>factor |
|-----------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|------|------------------|
| 1         | Scopus<br>indexed | Lycopene - a Pleiotropic<br>Neuroprotective Nutraceutical:<br>Deciphering its Therapeutic Potentials<br>in broad spectrum Neurological<br>Disorders                                     | Neurochemistry<br>International      | doi:<br>10.1016/j.ne<br>uint.2020.10<br>4823 | 2020 | 3.99             |
| 2         | Scopus<br>indexed | Neurological sequel of chronic<br>kidney disease: From diminished<br>Acetylcholinesterase activity to<br>mitochondrial dysfunctions, oxidative<br>stress and inflammation in mice brain | Scientific<br>Reports                | Vol- 9<br>Issue- 1<br>3097                   | 2019 | 4.01             |
| 3         | Scopus<br>indexed | A Friend or Foe: Calcineurin across the<br>Gamut of Neurological Disorders                                                                                                              | ACS Central<br>Science               | Vol- 4<br>Issue- 7<br>Page No-<br>805-819    | 2018 | 12.83            |
| 4         | Scopus<br>indexed | Cholesterol contributes to dopamine-<br>neuronal loss in MPTP mouse model of<br>Parkinson's disease: Involvement of<br>mitochondrial dysfunctions and<br>oxidative stress               | PLOS ONE                             | Vol-12<br>Issue- 2<br>No-<br>e0171285        | 2017 | 2.77             |
| 5         | Scopus<br>indexed | α-Synuclein binds to TOM20 and<br>inhibits mitochondrial protein import in<br>Parkinson's disease                                                                                       | Science<br>Translational<br>Medicine | Vol- 8<br>Issue- 342<br>No- 342ra78          | 2016 | 17.16            |

## **Complete List of Publications:**

| Sl.<br>No. | Indexed           | Title of the paper                                                                                                                                  | Name of the<br>Journal                              | Volume,<br>issue &<br>page nos.              | Year | Impact<br>factor |
|------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|------|------------------|
| 1          | Scopus<br>indexed | Lycopene - a Pleiotropic<br>Neuroprotective Nutraceutical:<br>Deciphering its Therapeutic Potentials<br>in broad spectrum Neurological<br>Disorders | Neurochemistry<br>International                     | doi:<br>10.1016/j.ne<br>uint.2020.10<br>4823 | 2020 | 3.99             |
| 2          | Scopus<br>indexed | Molecular Pathogenesis and<br>Interventional Strategies for<br>Alzheimer's Disease: Promises and<br>Pitfalls                                        | ACS<br>Pharmacology<br>and Translational<br>Science | Vol- 3<br>Issue- 3<br>Page No-<br>472- 488   | 2020 | -                |
| 3          | Scopus<br>indexed | Migraine and Ischemic Stroke:<br>Deciphering the Bidirectional<br>Pathway                                                                           | ACS Chemical<br>Neuroscience                        | Vol- 11<br>Issue- 11<br>Page No-             | 2020 | 4.21             |

|    |                   |                                                                                                                                                                                     |                                                                           | 1525-1538                                     |      |      |
|----|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|------|------|
| 4  | Scopus<br>indexed | Cell Death Pathways in Ischemic<br>Stroke and Targeted Pharmacotherapy                                                                                                              | Translational<br>Stroke Research                                          | doi:<br>10.1007/s12<br>975-020-<br>00806-z    | 2020 | 5.84 |
| 5  | Scopus<br>indexed | Inhibitory potential of plant secondary<br>metabolites on anti-Parkinsonian drug<br>targets: Relevance to<br>pathophysiology, and motor and non-<br>motor behavioural abnormalities | Medical<br>Hypotheses                                                     | Vol- 137<br>No- 109544                        | 2020 | 1.32 |
| 6  | Scopus<br>indexed | Advances in Studies on Stroke-<br>Induced Secondary<br>Neurodegeneration (SND) and Its<br>Treatment                                                                                 | Current Topics<br>in Medicinal<br>Chemistry                               | Vol- 20<br>Issue- 13<br>Page No-<br>1154-1168 | 2020 | 3.40 |
| 7  | Scopus<br>indexed | Natural Products and Their<br>Therapeutic Effect on Autism<br>Spectrum Disorder                                                                                                     | Advances in<br>Neurobiology                                               | Vol- 24<br>Page No–<br>601-604                | 2020 | -    |
| 8  | Scopus<br>indexed | Role of Oxidative Stress and<br>Antioxidants in Autism                                                                                                                              | Advances in<br>Neurobiology                                               | Vol- 24<br>Page No–<br>193-206                | 2020 | -    |
| 9  | Scopus<br>indexed | Quercetin-induced amelioration of<br>deltamethrin stress in freshwater<br>teleost, Channa punctata: Multiple<br>biomarker analysis                                                  | Comparative<br>Biochemistry<br>Physiology C<br>Toxicology<br>Pharmacology | Vol- 227<br>No- 108626                        | 2020 | 2.69 |
| 10 | Scopus<br>indexed | Intra-arterial Stem Cell Therapy<br>Diminishes Inflammasome Activation<br>After Ischemic Stroke: a Possible<br>Role of Acid Sensing Ion Channel 1a                                  | Journal of<br>Molecular<br>Neurosciences                                  | doi:<br>10.1007/s12<br>031-019-<br>01460-3    | 2019 | 2.89 |
| 11 | Scopus<br>indexed | Lactoferrin Coupled Lower<br>Generation PAMAM Dendrimers for<br>Brain Targeted Delivery of<br>Memantine in Aluminum-Chloride-<br>Induced Alzheimer's Disease in Mice                | Bioconjugate<br>Chemistry                                                 | Vol-30<br>Issue- 10<br>Page no-<br>2573-2583  | 2019 | 4.34 |
| 12 | Scopus<br>indexed | Endoplasmic reticulum-mitochondria<br>crosstalk: from junction to function<br>across neurological disorders                                                                         | Annala of New<br>York Academy<br>of Sciences                              | Vol- 1457<br>Issue- 1<br>Page No-<br>41-60    | 2019 | 4.03 |
| 13 | Scopus<br>indexed | Behavioral and Biochemical<br>Implications of Dendrimeric<br>Rivastigmine in Memory-Deficit and<br>Alzheimer's Induced Rodents                                                      | ACS Chemical<br>Neuroscience                                              | Vol-10<br>Issue- 8<br>Page no-<br>3789-3795   | 2019 | 4.21 |
| 14 | Scopus<br>indexed | Intra-arterial stem cell therapy<br>modulates neuronal calcineurin and<br>confers neuroprotection after ischemic<br>stroke                                                          | International<br>Journal of<br>Neuroscience                               | Vol-129<br>Issue- 10<br>Page no-<br>1039-1044 | 2019 | 1.84 |
| 15 | Scopus indexed    | Neuroprotective attributes of L-<br>theanine, a bioactive amino acid of                                                                                                             | Neurochemistry<br>International                                           | Vol-129<br>104478                             | 2019 | 3.99 |

|    |                   | tea, and its potential role in<br>Parkinson's disease therapeutics                                                                                                                      |                                        |                                              |      |       |
|----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|------|-------|
| 16 | Scopus<br>indexed | An in silico investigation on the<br>inhibitory potential of the constituents<br>of Pomegranate juice on antioxidant<br>defense mechanism: Relevance to<br>neurodegenerative diseases   | IBRO Reports                           | Vol-9<br>Issue- 6<br>Page No-<br>153-159     | 2019 | -     |
| 17 | Scopus<br>indexed | Evolving Evidence of Calreticulin as<br>a Pharmacological Target in<br>Neurological Disorders                                                                                           | ACS Chemical<br>Neuroscience           | Vol- 10<br>Issue- 6<br>Page No-<br>2629-2646 | 2019 | 4.21  |
| 18 | Scopus<br>indexed | Garcinol, a multifaceted sword for the treatment of Parkinson's disease                                                                                                                 | Neurochemistry<br>International        | Vol- 128<br>Page No-50-<br>57                | 2019 | 3.99  |
| 19 | Scopus<br>indexed | Interplay between Mitophagy and<br>Inflammasomes in Neurological<br>Disorders                                                                                                           | ACS Chemical<br>Neuroscience           | Vol- 10<br>Issue- 5<br>Page No-<br>2195-2208 | 2019 | 4.21  |
| 20 | Scopus<br>indexed | Neurological sequel of chronic<br>kidney disease: From diminished<br>Acetylcholinesterase activity to<br>mitochondrial dysfunctions, oxidative<br>stress and inflammation in mice brain | Scientific<br>Reports                  | Vol- 9<br>Issue- 1<br>3097                   | 2019 | 4.01  |
| 21 | Scopus<br>indexed | Trigonelline therapy confers<br>neuroprotection by reduced<br>glutathione mediated<br>myeloperoxidase expression in animal<br>model of ischemic stroke                                  | Life Sciences                          | Vol- 216<br>Page no-<br>49-58                | 2019 | 3.44  |
| 22 | Scopus<br>indexed | Therapeutic spectrum of interferon-β<br>in<br>ischemic stroke                                                                                                                           | Journal of<br>Neurological<br>Sciences | Vol- 97<br>Issue- 2<br>Page No-<br>116-127   | 2019 | 2.47  |
| 23 | Scopus<br>indexed | Accumulation of Cholesterol and<br>Homocysteine in the Nigrostriatal<br>Pathway of Brain Contributes to the<br>Dopaminergic Neurodegeneration in<br>Mice                                | Neuroscience                           | Vol- 388<br>Page No-<br>347-346              | 2019 | 3.24  |
| 24 | Scopus<br>indexed | Novel Targets for Parkinson's<br>Disease: Addressing Different<br>Therapeutic Paradigms and<br>Conundrums                                                                               | ACS Chemical<br>Neuroscience           | Vol- 10<br>Issue- 1<br>Page No-<br>44-57     | 2019 | 4.21  |
| 25 | Scopus<br>indexed | A Friend or Foe: Calcineurin across<br>the Gamut of Neurological Disorders                                                                                                              | ACS Central<br>Science                 | Vol- 4<br>Issue- 7<br>Page No-<br>805-819    | 2018 | 12.83 |
| 26 | Scopus<br>indexed | Mitochondrial Dysfunction in Stroke:<br>Implications of Stem Cell Therapy                                                                                                               | Translational<br>Stroke Research       | doi:<br>10.1007/s12<br>975-018-              | 2018 | 5.84  |

|    |                   |                                                                                                                                                            |                                              | 0642-y                                     |      |      |
|----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------|------|
| 27 | Scopus<br>indexed | Inflammasomes in stroke: a triggering role for acid-sensing ion channels                                                                                   | Annals of New<br>York Academy<br>of Sciences | Vol-1431<br>Issue- 1<br>Page no-<br>14-24  | 2018 | 4.03 |
| 28 | Scopus<br>indexed | Garcinol, an effective monoamine<br>oxidase-B inhibitor for the treatment<br>of Parkinson's disease                                                        | Medical<br>Hypotheses                        | Vol-117<br>Issue- 1<br>Page no-<br>54-58   | 2018 | 1.32 |
| 29 | Scopus<br>indexed | Attenuation of Aluminum Chloride-<br>Induced Neuroinflammation and<br>Caspase Activation Through the<br>AKT/GSK-3β Pathway by Hesperidin<br>in Wistar Rats | Neurotoxicity<br>Research                    | Vol-34<br>Issue- 3<br>Page no-<br>463-476  | 2018 | 3.53 |
| 30 | Scopus<br>indexed | Noncoding RNAs in ischemic stroke:<br>time to translate                                                                                                    | Annals of New<br>York Academy<br>of Sciences | Vol-1421<br>Issue- 1<br>Page no-<br>19-36  | 2018 | 4.03 |
| 31 | Scopus<br>indexed | Myeloperoxidase and Neurological<br>Disorder: A Crosstalk                                                                                                  | ACS Chemical<br>Neuroscience                 | Vol-9<br>Issue- 3<br>Page no-<br>421-430   | 2018 | 4.21 |
| 32 | Scopus<br>indexed | Getting Closer to an Effective<br>Intervention of Ischemic Stroke: The<br>Big Promise of Stem Cell                                                         | Translational<br>Stroke Research             | Vol-9<br>Issue- 4<br>Page no-<br>356-374   | 2018 | 5.84 |
| 33 | Scopus<br>indexed | Disturbed purine nucleotide<br>metabolism in chronic kidney disease<br>is a risk factor for cognitive<br>impairment                                        | Medical<br>Hypotheses                        | Vol-111<br>Page no-<br>36-39               | 2018 | 1.32 |
| 34 | Scopus<br>indexed | Melatonin protects against behavioral<br>deficits, dopamine loss and oxidative<br>stress in homocysteine model of<br>Parkinson's disease                   | Life Sciences                                | Vol-1<br>Issue- 192<br>Page no-<br>238-245 | 2018 | 3.44 |
| 35 | Scopus<br>indexed | 1-Methyl-4-Phenylpyridinium-<br>Induced Death of Differentiated SH-<br>SY5Y Neurons Is Potentiated by<br>Cholesterol                                       | Annals of<br>Neurosciences                   | Vol-24<br>Issue- 4<br>Page no-<br>243-251  | 2018 | 0.43 |
| 36 | Scopus<br>indexed | Global loss of acetylcholinesterase<br>activity with mitochondrial complexes<br>inhibition and inflammation in brain<br>of hypercholesterolemic mice       | Scientific<br>Reports                        | Vol-7<br>Issue- 1<br>No-17922              | 2017 | 4.01 |
| 37 | Scopus<br>indexed | Stroke Management: An Emerging<br>Role of Nanotechnology                                                                                                   | Micromachines                                | Vol-8<br>Issue- 9<br>Page no-<br>262       | 2017 | 2.22 |
| 38 | Scopus<br>indexed | Cholesterol contributes to dopamine-<br>neuronal loss in MPTP mouse model                                                                                  | PLOS ONE                                     | Vol-12<br>Issue- 2                         | 2017 | 2.77 |

|    |                   | of Parkinson's<br>disease: Involvement of mitochondrial                                                                                                                                                                  |                                           | No-<br>e0171285                                |      |       |
|----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|------|-------|
| 39 | Scopus<br>indexed | dysfunctions and oxidative stress<br>Hypercholesterolemia causes<br>psychomotor abnormalities in mice<br>and alterations in cortico-striatal<br>biogenic amine neurotransmitters:<br>Relevance to<br>Parkinson's disease | Neurochemistry<br>International           | Vol-108<br>Page No-<br>15-26                   | 2017 | 3.99  |
| 40 | Scopus<br>indexed | Oxidative stress and mitochondrial<br>dysfunction are the underlying events<br>of dopaminergic neurodegeneration in<br>homocysteine rat<br>model of Parkinson's disease                                                  | Neurochemistry<br>International           | Vol-101<br>Page No-<br>48-55                   | 2016 | 3.99  |
| 41 | Scopus<br>indexed | A highly reproducible mice model of<br>chronic kidney disease: Evidences of<br>behavioural abnormalities and blood-<br>brain barrier disruption                                                                          | Life Sciences                             | Vol-161<br>Page no-<br>27-36                   | 2016 | 3.44  |
| 42 | Scopus<br>indexed | L-DOPA-induced<br>hyperhomocysteinemia in Parkinson's<br>disease: Elephant in the room                                                                                                                                   | Biochimica et<br>Biophysica Acta          | Vol- 1860<br>Issue- 9<br>Page no-<br>1989-1997 | 2016 | 3.68  |
| 43 | Scopus<br>indexed | α-Synuclein binds to TOM20 and<br>inhibits mitochondrial protein import<br>in Parkinson's disease                                                                                                                        | Science<br>Translational<br>Medicine      | Vol- 8<br>Issue- 342<br>No- 342ra78            | 2016 | 17.16 |
| 44 | Scopus<br>indexed | L-DOPA treatment in MPTP-mouse<br>model of Parkinson's disease<br>potentiates homocysteine<br>accumulation in substantia nigra                                                                                           | Neuroscience<br>Letters                   | Vol- 15<br>Issue- 628<br>Page no-<br>225-229   | 2016 | 2.17  |
| 45 | Scopus<br>indexed | Cholesterol in Pancreatic β-Cell<br>Death and Dysfunction: Underlying<br>Mechanisms and Pathological<br>Implications. Pancreas                                                                                           | Pancreas                                  | Vol- 45<br>Issue- 3<br>Page No-<br>317-324     | 2016 | 2.65  |
| 46 | Scopus<br>indexed | Chronic exposure of homocysteine<br>in mice contributes to dopamine loss<br>by enhancing oxidative stress in<br>nigrostriatum and produces behavioral<br>phenotypes of Parkinson's disease                               | Biochemical and<br>Biophysical<br>Reports | Vol- 6<br>Page No-47-<br>53                    | 2016 | -     |
| 47 | Scopus<br>indexed | The potential physiological crosstalk<br>and interrelationship between two<br>sovereign endogenous amines,<br>melatonin and homocysteine                                                                                 | Life sciences                             | Vol- 139<br>Page No-97-<br>107                 | 2015 | 3.44  |
| 48 | Scopus<br>indexed | Cholesterol - A putative endogenous<br>contributor towards Parkinson's<br>disease                                                                                                                                        | Neurochemistry<br>International           | Vol- 90<br>Page no-<br>125-133                 | 2015 | 3.99  |
| 49 | Scopus<br>indexed | Piroxicam confer neuroprotection in<br>Cerebral Ischemia by inhibiting<br>Cyclooxygenases, Acid- Sensing Ion                                                                                                             | Bioinformation                            | Vol- 11<br>Issue- 4<br>Page no-                | 2015 | -     |

|    |         | Channel-1a and Aquaporin-4: an in                |                   | 217-222             |      |       |
|----|---------|--------------------------------------------------|-------------------|---------------------|------|-------|
|    |         | silico comparison with Aspirin and               |                   | 21/-222             |      |       |
|    |         | Silico comparison with Aspirin and<br>Nimesulide |                   |                     |      |       |
|    |         |                                                  |                   | N/ 1 07             |      |       |
|    | C       | Activation of NMDA receptor by                   |                   | Vol- 85             |      |       |
| 50 | Scopus  | elevated homocysteine in chronic                 | Medical           | Issue- 1            | 2015 | 1.32  |
|    | indexed | liver disease contributes to                     | Hypotheses        | Page no-            |      |       |
|    |         | encephalopathy                                   |                   | 64-67               |      |       |
|    |         | Piroxicam inhibits NMDA receptor-                |                   |                     |      |       |
|    |         | mediated                                         |                   | Vol- 83             |      |       |
| 51 | Scopus  | excitotoxicity through allosteric                | Medical           | Issue- 6            | 2014 | 1.32  |
|    | indexed | inhibition of the GluN2B subunit: an             | Hypotheses        | Page no-            | -01. | 110 - |
|    |         | in silico study elucidating a novel              |                   | 740-746             |      |       |
|    |         | mechanism of action of the drug                  |                   |                     |      |       |
|    |         | Inhibition of matrix                             |                   |                     |      |       |
|    |         | metalloproteinase-2 and 9 by                     |                   | Vol- 83             |      |       |
| 52 | Scopus  | Piroxicam confer neuroprotection in              | Medical           | Issue- 6            | 2014 | 1.32  |
| 52 | indexed | cerebral                                         | Hypotheses        | Page no-            | 2014 | 1.52  |
|    |         | ischemia: an in silico evaluation of             |                   | 697-701             |      |       |
|    |         | the hypothesis                                   |                   |                     |      |       |
|    |         | Neuroprotective potential of silymarin           | CNS               | Vol- 19             |      |       |
| 53 | Scopus  | against CNS disorders: insight into              | Neuroscience      | Issue- 11           | 2013 | 4.01  |
| 55 | indexed | the pathways and molecular                       | and Therapeutics  | Page no-            | 2013 | 4.01  |
|    |         | mechanisms of action                             | and merapeuties   | 847-853             |      |       |
|    |         | $\beta$ -phenethylaminea phenylalanine           |                   | Vol- 19             |      |       |
|    | Scopus  | derivative in braincontributes to                | CNS               | Issue- 8            |      |       |
| 54 | indexed | oxidative stress by inhibiting                   | Neuroscience      | Page no-            | 2013 | 4.01  |
|    | muexeu  | mitochondrial complexes                          | and Therapeutics  | 596-602             |      |       |
|    |         | and DT-diaphorase: an in silico study            |                   | 390-002             |      |       |
|    |         | Contribution of $\beta$ -phenethylamine, a       |                   | Vol-29              |      |       |
|    | Saamua  | component of chocolate and wine, to              | Nouroscience      |                     |      |       |
| 55 | Scopus  | dopaminergic neurodegeneration:                  | Neuroscience      | Issue- 5            | 2013 | 3.49  |
|    | indexed | implications for the pathogenesis of             | Bulletin          | Page no-<br>655-660 |      |       |
|    |         | Parkinson's disease                              |                   | 033-000             |      |       |
|    |         | L-DOPA induced-endogenous 6-                     |                   |                     |      |       |
|    |         | hydroxydopamine is the cause of                  |                   | Vol-79              |      |       |
| 57 | Scopus  | aggravated dopaminergic                          | Medical           | Issue-2             | 2012 | 1.20  |
| 56 | indexed | neurodegeneration in Parkinson's                 | Hypotheses        | Page no-            | 2012 | 1.32  |
|    |         | disease                                          |                   | 271-273             |      |       |
|    |         | patients                                         |                   |                     |      |       |
|    |         | Salicylic acid protects against chronic          |                   | X7 1 1044           |      |       |
|    | Scopus  | L-DOPA- induced 6-OHDA                           |                   | Vol-1344            | 0010 | 0.10  |
| 57 | indexed | generation in experimental model of              | Brain research    | Page no-            | 2010 | 3.12  |
|    |         | parkinsonism                                     |                   | 192-199             |      |       |
|    |         | L-DOPA-induced 6-                                |                   | Vol-56              |      |       |
|    | Scopus  | hydroxydopamine production in the                | Neurochemistry    | Issue-2             |      |       |
| 58 | indexed | striata of rodents is sensitive to the           | international     | Page no-            | 2010 | 3.99  |
|    |         | degree of denervation                            |                   | 357-362             |      |       |
| 59 | Scopus  | Melatonin inhibits 6-                            | Journal of Pineal | Vol-47              | 2009 | 15.2  |
|    | r       |                                                  |                   |                     | /    |       |

|    | indexed           | hydroxydopamine production in the                                                                                                                                                                 | Research                                  | Issue-4                                  |      |      |
|----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|------|------|
|    |                   | brain to protect against experimental<br>parkinsonism in rodents                                                                                                                                  |                                           | Page no-<br>293-300                      |      |      |
| 60 | Scopus<br>indexed | Striatal dopamine level contributes to<br>hydroxyl radical generation and<br>subsequent neurodegeneration in the<br>striatum in 3-nitropropionic acid-<br>induced Huntington's<br>disease in rats | Neurochemistry<br>International           | Vol-55<br>Issue-6<br>Page no-<br>431-437 | 2009 | 3.99 |
| 61 | Scopus<br>indexed | Long term L-DOPA treatment causes<br>production of 6-OHDA in the mouse<br>striatum: Involvement of hydroxyl<br>radical                                                                            | Annals of<br>Neurosciences                | Vol-55<br>Issue-6<br>Page no-<br>431-437 | 2009 | 0.43 |
| 62 | Scopus<br>indexed | Long-term L-DOPA treatment causes<br>indiscriminate<br>increase in dopamine levels at the cost<br>of serotonin synthesis in discrete brain<br>regions of rats                                     | Cellular and<br>Molecular<br>Neurobiology | Vol-27<br>Issue-8<br>Page no-<br>985-996 | 2007 | 3.89 |