CHAPTER 12

12.1 INTRODUCTION o

The law of large numbers attempts to prOVid-e : phllllosollihlciilf]iuzhtgcamlm _fOI‘
all attempts to estimate a probability expen_menta y. 1t jus ed e 're ative
frequency theory of probability. Morgover, it uses the mean an var1an|ce of
the random variable to extract further information ab.o 4 e ral}d(?m s
or more precisely about the sequence of random vane.ibles ot sumla.r typ?' i
this chapter we will study some special cases of this law and wnll. briefly
discuss its various implications, particularly in terms of experimental

measurements.

12.2 THE WEAK LAW OF LARGE NUMBERS

In 1837, Poisson published the first general formulation of a certain scientific
law, which is now known as the empirical law of large numbers because it
applies to the outcomes of a large number of trials of an experiment. Let us
consider a probability space (Q, A, P(¢)) and an infinite sequence X;, X,, Xg,...
of random variables on Q are given. We introduce the new random variables
S,and X, forn=1,2, .. We define,

S, = X1+X2+...+X

N

1 1
and Xy = = Snz;;(X1+X2+...+Xn)

.First. we consider the special case in which X1+ X,, ... are independent
and identically distributed random variables, y

In this case all the random variables X, have exactly the same distribution
and hence the same mean p and variance g2,

Thus, E(S,) = np and E(X,) = .
Also, as X, X,, ... are independent so,

var(XEX}-) =0forizj, thus, var (3(_,,) = 22—-

Under the above
stated as follows :

Let [X_

situation the weak 1aw of large number holds, which is

}bea sequence of jid variates, with E(X) = n < , then
{ r
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| P Ui, s
f.[.’-f | ] > 0 as n o 3
i ) 2 — 18
50.-‘ X" i‘} p, I.E.; X” ConvergeS to (12.1)

: Hi o
The theorem was first publisheq b i ]:i);?ba-bmty'
jod a5 the Khmteais lavof large numberSChln
g :

1929 59 SOmetimeg also
f:Here, S, =X, + X, + . ;
pior £ L O AN e 0 S,/
then using the addition theorem of characteristi:: fu
Nction

o (1) = ?s,() =¢u(t)

we have

—_—

h

n
= 3 (f_]m(i)]
: n n
An, n — », the RHS tends to ¢/, hence
lim #x (f) =eint
n—o N
Which is the characteristic function of a degenerate variate X such that |
=p) =1 |
The cdf of which is given by
F(x) = 1ifX2p
= 0ifX< H |

The cdf is continuous everywhere except at X = p. Choosing € > 0, we
@n have

lim P{X, <p-¢} = lim Fg (u-€)
S (122)
= PX (‘p - E,) =0

X i + €)

lim P{X, <p+¢} = Im Fx, @ :
n— y .(123)
= FX (Ll + E) £

lim P{“)-(-,; >pt e} = 0by(122)

n—w

3 t,
Thus from (12.2) and (12.3) it follows th?
lim P{|X,, -p >ef =0

n—-w

i (s 0}
& P[._SJL—;J >e] > 0asn™
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12.3 A MORE GENERALIZED WEAK LAW

lized definition to the weak law of large

Chebyshev forwarded a more genera L variables having expectations,

0
numbers. Let Xy, Xy, - be a sequence
LIPR LEVRRE Further let,

' -Y-’L-—>0
Vn=Var (X1+x2+'" +Xﬂ) lf nz

as 11 — o then, given two positive quantities € and n however small we can

find an 11, depending on € and 7 such that
P[[xl #Xgtet Xy f g FetHn i SE:I Sl (2

l " n

for all n 2 n,
Proof : We have

. [Xl +X2+....+X,,}

1
— + X, + ..+ X
n n E (X]. 2 H)

E % [E(X,) + E(X,) + . + E(X,)]

1
T f_I (pl +1‘12+ o F 1—1")

Xy +Xy+...+X 1
and,var( 1 2n ")=FV(X1+XZ+...+XH)=§£—'
Now, by Chebychev’s inequality we have
P[|X-p|<to]>1-L
t2
Thus, PPX] +Xo+.+ Xy Py +py +...+pn|<t,/\fn wp il
l n n I* ” }'2’

So, for any positive quantity ¢ choosing it in such a way that, Y- = €
we have n
|

. —_‘L -
Since, —5- — 0 as n — o, given ne?

X1+ Xo +....+X, Mttt +p,
Attty
n

n

<e Vn
]>1_H262

i >0, however small, one can find an
11, depending on € and N, such that

-V% <neforalln<;,
" = Ng-

For such an n, we have

|

whenever n 2 "y

KXo bt X Pty i,
_-_‘_-_—-_-—_-__"—‘——-—-

n

H

Se] >1-7n
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12.4 BERNOULLI LAW OF LARGE NUMBERS

If the outcome A occurs 1, times during » identical trials of an experiment
and if 1 is large enough, then the relative frequency 11, /1 should be close to
the probability p of A. Thus we may translate the concept of identical trails to
independent repeated Bernoulli trials with probability p of success.

Thus, we write X, equal to 1 or 0 according to whether the outcome of
the kth trial is Aornot, p=P (X, =1)and g =P (X, =0) =1 -p.

Then X,, is a random variable, which represents the relative frequency of

A, n=E(X,) = E(X,) = p and so, using WLLN

Lt P(X,-p|>€) = 0 .(12.5)

1n—>x0

This is the Bernoulli law of large numbers.

Statement : Let {X,} be a sequence of independent and identically
distributed Bernoulli random variables with P (X;=1) =p, P X;=0)=1-p=
g with 0 <p < 1. Then for every € >0, we have

lim P(|')?" - p’ < e) =1

H—D
Proof : We have
— Xl +X2+....+Xn
E(X,,) K E( n
~ p+p+..ntimes np
X n 5 Fad
= X1 +Xg+...+X 1
Var (X,,) = Var ( 1 2?1 ") = (X + X5 + e + X))
P
i T
Now, by Chebychev’s inequality for every € > 0, we have
P —-—-——-—*—5(_" “Else < =
ypa/n &

and hence, P['S(-n - plze] = ;%

Thus, Lim P[[SE,, -p|2 e] =0
n-—&a_ : ph

Since, in practice the unknown p has to be estimated empirically, the
above theorem asserts that in order to have an agreement between p and its

estimate X, we need to have a large number of observations.
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12.5 THE STRONG LAW OF L
important than the weak law of large nu

f independent random variables having ey o Use.
bability 1, converge to the mean of that dlstn’bumo"

, X, be independent random variableg Such
., n.Lét tha

ARGE NUMBERS

The strong law is more 1
average of a sequence O
distribution will, with pro

Statement : Let X, .-
E(X,) = 0 and var (X;) = of <o, k=12

k
.-_Z X, k=1,2,.yn
i=1

Then for all € >0, we have

1 n
P S:2€|l £ 3 o
[mexfulee] « 72 (126
Proof : Consider
pa
k=1
) " n
3t - 2e() e[ S
k=1 k=1
= E I:[Zxk +222kak}
k <k’
3] X
. E[ Z J ) (127
Consider the event, [max IS 2 €]
= J(Sl2e)  max |S,| < €] in(12.6), we have

k

1

Cz

L Ay, where Ay =[|S, IZE]

k.

= AjUASA e AE
1 ZUA AL A
253 e UACAC AclAn

[1S;] = €] :
V]S <¢, |9$ZE]U[|S | <e,|S;] <e. 1S, 2 €
..... U“S I <€,. IS 1| <€, |5,,|251

i

- B, B, =
U A HSl<elSl<<~: |s“|<ﬁ|s;z L
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So, By's are disjoint events, therefore, we have
max
15.&"" \S l26 U“S”\ kl ZBA
where,
Be=115] <& . IS, <, |S,| 2 €]
So, By’s are disjoint events. (12.8)
Consider, now,

kZﬂo% = [521=j 2 4G ()

where G is the distribution function of S

3 jsﬁdG(xH jsﬁdc(x)z jsﬁdc(x)

(max [,z €) (max |5,|< ¢ (max [8,]2 €)

= ioz [s,% 1[

lsksn
k=1

or E [5721 (113l +1p, +..+1p, )]: Zn: EL[S,E1 IB,(]

= E|S21, ing (12.8)  ..(129
max |5, laeﬂ $ 5, using (12.8) (12.9)

k=1
Consider,
E[S% IBk] = {(Sn Sk+SL) Ig ]
= E ‘:{(Sn _Sk)2 +S§ +2(Sn _Sk)sk}lBk]
> 2E[(S, - S5 Ip] + E[S% 13*]
i E[ShIp,| 2 0+E [s1s,]
Since,

5, -S, = (X + X, + +X)-(X]+X2+...+Xk)

= Xpyg t Xm e # X
and 5, = X; + X5 + .- F X, are independent

E(Sn _5)Suls,| = EIS,~ S ESilp)

= E[(Xp,y + Xpaz + =+ X,) Silg, 1=0
Since, E(X,) =0 ¥ 1.
Hence,

E [SiIs,

!

Y :E[S%IB»}
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Using this result in (12.9), We 8¢

3 o

k=1 k=1

v

|

So, P[max [Sk [>e] < :2 Zo%

1<k<n

k
Note : If we take k = 1 in 5 = ZX,- then the SLLN reduces to,
i=1

PIIX;] z€]< %22- which is the Chebyshev’s inequality.

So, for k = 1, we get the Chebyshev’s inequality.
Hlustration 12.1 : Let (X} be any sequence of random variables. We

= .1 s
write X,, = " Z Xi. A necessary and sufficient condition for the sequence { X,)
i=1

to satisfy WLLN is that

B

[ 14 -)?,2,
Proof : We first prove that,
i

E J——>0asn-—+oo

for all we A_
Y2 Y1i e’-
1+ Y2 E2 -

2 €?and using (1), we see that

Thus,
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> PUIY, | 2 o] < [y | 2 a1
i 1 1% T | P TR
y2
E n
= [ Y,% >1+EZ Iil-{-Y'%:'
sl CTFE" Sainy I
n (€ /(1+2))
_ Using Markov’s inequality.
= AL PIY, 2el <0
= Y,,£>0
We now prove that
¥ S'p = E[ Y ]—)Uasnaoo
n 1+Y2

For this we consider

Y TP
AR

—-€ 2 € 7 b 2
- Yy Yy d L d
‘J. 1432 fu ) dy + j1+y2 fu ) dy + _[ 1+ fuly) dy
—wm —-€ =6
9 2
= ( s 3 J fuy) dy + _[ 1412 fuy) dy
e\ l<e
=[+1I

In the first integral, we have

a 1+b
1Y,| 2 >0 (}ETJ( b J’l

2 2 Yp% 62
e Y,‘;Ze>0::>1Y?% ol
2
& Y o
i L& 14+Y> T
In the second integral we . 1ve
Y?

Yo < Y2 where |Y,| <€
1+Y" ) 1

l Ys :l J fn(y)dy i .[ yﬁfﬂ(y)dy'.'
B2 o

'1—+ Y;'i_ < lyn|?—€ _lyﬂ_l'{E T
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<
[ Y 2
- < PHY, ] > E] + €
Yool
Lim o
e 1H—» @ E _1 +Y,% ]
[ y2
. n . < 0
= }—IP;E_I-I—Y;,'_I
. be a sequence of iid random variables
X )11 show that, G, — C for some finite

n

[lustration 12.2 : Let X;, X,
in U[0, 1]. For the G,, = (X;, Xy +

number C. Find C.
Solution : Let, G, = (X;, Xy s X)'/"

1
So, log G, = = 2 log X,

S {zn: —logX,}

T on |4
i=1

To find the pdf of Y = — log X we proceed as follows

dx
where the right hand side is expressed in terms of Y
So, gy) = e¥
and E(Y) = 1%y,
So, Y, 51 by WLLN
1 n
——Zlogxf—) 1 =>-logG, > 1

B o
orG, » €.

L 8s.C=gl
Illustration 12.3. Examine if the law of large numbers holds for the
sequence of independent random variables {X,] with the distribution of X,

given by
1
X) = —=, (x| >1
fn() |I|3 ' I

0, otherwise

1
f, (x) = I“;F, [x| >1

Solution :
0, otherwise



The Law of Large Numbers
i 299

i.e., 1
fu () = ‘—;lg-,x>1orx<_1

I

0! othe rwise

E(X) I xf(x)dx

]

EQA) = -:rzf(x)dx

(log:t):e —(logx):o
(log = - log 1) - (log (1) - log (- «))
(o0 - 0) - (log (1) ~ log (- ))

o

E(X?) does not exist.
V(X) does not exist.

. law of large numbers does
random variables {X,].

not hold for the sequence of independent
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: 1
s AR 2
Illustration 12.4. Show that the sequence P[X; = *2f] = 5 does ng

obey the weak law of large numbers.
: _ 1
Solution : P [X, =2'] = =
= XP (X, =29+ (-2 P (x,=~2h
1 1

e Ak 2 ak G TS
-2x2 2><2

.
E(X}) = Z X} P(X)

= 9P (X, =29 + (- 292 P (X, = - 2k
- 22k l % 221: .l

2
..221'

V) = E(X}) - (E())2 = 22— 02 = o2
Now, B" &Y [i Xk]
k=1

= 2 V(X)
k=1

24 4922 4 923, =y 22n
A+AZ4 A3, +A"if A = 22

I n

]

I

W [
=
1

fem—

n

i

==
9

e
Lim ~& = g 4
N—w "2 le T
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4 Lim 2¥ I
= — ‘Lim—=0
3 ndw 3 "_l?;"g
25
Let el 2%,
LSRR
22n+2
Upai = p)
(n+1)
Un+l = 22”+2 ”2 22 ) 4
U, 2 et T AN
(3] (143)
Lim Uu+1 4>1 Hn n
nH—aw n

U, > ®asn— .
B

1
7y —»>®asn —>w,
n

1
~. The sequence P [X, = +2}] = - does not obey the weak law of large

numbers.

Illustration 12.5. Let X;, X,, ... be iid variates with pmf.

f(x)=a"/(1-o¢),x=0, 1.2 ... Qzasl
Show that WLLN is followed by X/'s.

X

Solution : f(x) = 101‘1

EQ = ., ¥®
x=0

aI

X
0

E(X)

Ms
|

-

=
i

o

—_

i

-
! x=0

1}
|
S
R
o
+
+.
na
R
B3
4
o
%
+

I

1-a

U

,x=0,1,2,.,0<a<1

—_— xa.'f

2 o+ 2.0% + 30 + 1]

O 20+ B0 ]
1-a. i e

nnnnn
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E(X?) =

An Introduction to probability ™
€0

__E_ (1—(1)"2

l1-a

)

o
(1-)°

|
=

|

|H
T,
LM

-

[ 2%]

Q-d

—_—

1
—— [0%a% + 120! + 22,02 + 323 4

1-a

1 [a+40a2+9a3+ ... ]
1-a

1
— a(l+4a+902 +...)
1-«a

1
I a(l+a)(1-a)3

a(l+a)
(1-a)?!
E(X?) - {E(X)}2

a(l+a)_ a 2
(1-a)* 1-a)3

2

(1-0.)4 (1_(1)6

ry
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7

= i 2)6 [o3 - a? - 2a + 1]

3 2
ﬁ = na [II -a -2a+11\
n2 (1 "(1)6 "2
(o} .
= —— [o®=a?-20 +1
n(1 —a)6 ]

ko
E — Qasn—ow

WLLN is followed by X, (i=1,2, ..., n).

Illustration 12.6. A pack of cards numbered 1, 2, ..., n is shuffled and
the cards are dealt one at a time. The variate X; posses values 1 or 0 according
as the ith card dealt has number i on it or not and each card is equiprobable
to appear at the ith place. Show that WLLN holds for the sequence {(X,})-

Solution. X; = 1 if the ith card dealt has the number i on it
= (0 otherwise

E(X)=1P(X,= 1) + 0P(X;=0) =P(;=1) =,IT

1
E(X}) = 12 P(X; = 1) + 02 P(X; = 0) = P(X; = ==

vy -2 -(2) 2=

u
X

(o=}
=
|

—

m\
i
[§]

il
S

B,
Asn —> ®, nz —0

WLLN holds for the sequence (X!
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EXERCISE
of the weak law of large numbers,

State the conditions for the existence
1. State the conditions number holds for the mean of

Examine whether the weak ln\\" of large itl
a sequence of independent varates X, with,
s (7 |
PiX; =2 \/logk = [TAS, 2003}
2. Explain the concept of strong and week law of large numbers,
[1AS, 2000

Let Xy, Xy, X, 18 a sequence of independent random variables with
PN, =2 K] = : where a > 0. Prove that the law of large numbers holds
D

for this sequence fora < 5. [1AS, 1999]

Show that a sequence of random variables {Xy| satisfies the week law
of large numbers, if

1 H
-;;.—Var [Zka —0asn 2 x
k=1
5. Verify whether the strong law of large numbers holds for a sequence
of random variables (X} defined by, P[X, ==27"] =1/2 [IAS, 1987]
6. State and prove the weak law of large numbers for non-identically
distributed random variables. [IAS, 1987]
Examine whether the law of large number holds for the following
sequence of random variables :
P[X,= +2"] = 2@ *UP[X =0] = 1 - 2 [TAS, 1987]
8. Let (X, n=1,2,..) beasequence of random variables each with mean
0 and unit variance. Suppose that the correlation coefficient between
X, and X, where mz n, equals to {-|m-n| a} > 0. Show that the weak
law of large nun\be;s holds for the sequence (X, n=1,2, ..}
[1AS, 1988]

9. Examine whether the law of large number holds for sequence of
independent random variable (X, n = 1, 2, ...} with the distribution of

X, givenby,

[IAS, 1981]

~J

e Tl

3 g
f(x) = llml (188, 1998]

10, Otherwise



" CHAPTER 13

;he Central Limit Theorem

| 13.1 INTRODUCTION

The Central limi i
e t theorem is one (_)f the most remarkable results in probability
. y. - )tf Ol;lighly Spfeakmg, it states that the sum ¢f a large number of
Henlcfﬂit Ilorva_rc'; om wfanables has a distribution that is approximately normal.
} : ]C)l ides a simple way .of computing approximate probabilities for
sum of in ependent_ r_andom variables. The theorem also provides means to
inform that the empirical frequencies of so many natural populations exhibit
the normal form.

. From the dice experiment in the probability chapter, it is seen that the
stability of the proportions of the outcomes is observed, when the experiment
is repeated under the constant conditions. The same can also be seen in the
coin tossing experiment. A coin is tossed a large number of times unde the

constant conditions, the probability of occurrence of head approaches to 0.5

for an unbased coin. The possible outcome of the coin tossing experiment 1S

two and the sample space is w = (H, T}, where H and T represent Head and

Tail. We denote the probability of occurrence of Head as P(H) = 0.5 and the
probability of occurrence of Tail as P(T) = 0.5. The repeated trials are
independent. These repeated independent trials are called Bernoulli trials, which

is defined as follows.
In general, fora Bernoull

one of the occurrence of the outcome and A,
outcome. The sample s (A,A}.Let P(A) =pand P (A)

_ g such thatp + 4= 1. o
4 H wepare interested to know the effect of considering large number of
¥ em. We define the Central Limit Theoren

trials, which leads to Central Limit Theor
in the following theorem. b -

Theorem Consider a sample space W= (A,A] with P(A) =P and P(A)
=1.Givenn independent I

: trial there will be only two outcomes. Let A be
the non-occurrence of the

pace is denoted by w =

-

!

amdon variables Xy, Xy +-r
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. " Then, F () > @ (x)asnr o forall v o R,
Let S, = Mx_ Proof : Let,
il |
w.:_...a i 7 = J\ZHX _; nx Hp I " N“H ¥ Hp
| T = -
Then for any real aumber a and b, m g 2l I v
::._. " .— HM “. = — ..M“AMXI_luw; .Hu MH K__ Jt
rigren P(a < mzmS = I.,mlﬂ .ﬂaxﬁ - dx ,\.n_ a = In o
1

For any sequence of events for any 1, S,, must be some number. Thus for ~Ta M«. (= 3,200 1)

alln, X, ~ i
P(- o< mnu <w)= 1 where, Y, = |._Mi1 are iid variates with E(Y)) =0, var (v)=1L
" 2 The characteristic function of Z, is ¢ and is given by,
Thus for large 1, the integral P(-o= m”_m ), .8, == ._..“mxv - \dx
2 (t / n
m 2 &MJ_‘_ .__..%:_ ) = &M.z_._ T..h___zﬁ.ﬁulﬂ&ﬁ?\)\_l_; :u:
must be one, which is the main interest for the central limit theorem. If the
integral is not equal to one, the central limit theorem m..a. not true. Now, according to Maclaurin’s expansion of ﬁ,_:_er.; up o second
tributed random variables order terms, we have,

Let Xy, Xgs v Xy be a sequence of jointly dis

with finite means and variances, 0 < var (X;) <. Then the sequence of is said
to follow the Central Limit Theorem (CLT) iff t t ¢ 12
Py hdl_l_su (0 + 0 —

Z Sn -ES,) L N, 1) "

n = " Nar(Sy)

o O+ 7 EY O o

“rom the properties of characteristic function we have,

dy(0) =1, ¢y ©=i=>E(X)=0

L
where, 5, = M X, and ¢y () = 2= E(¥) =-1
The meaning of central limit theorem is that repeated samples of size ‘1’ So, }hhlw 5 fea— 41 £
even from a non-normal population generate an approximately, normal n an "
distribution of either sums or means. For, example if X; = (i =1 2,..,n)bea : o T = Y gi
. ’ TR L x H Y. = Y PS,
sample from uniform (0, 1) distribution (say), with 1 cmwnm sufficiently large Substituting (2) In {Yycasicess 1 gives "
then M X; will generate an approximately normal distribution. i Ty, M =|1- mml +0 o
] n n
n
13.2 LINDEBERG - LEVY CENTRAL LIMIT THEOREM Now taking limit # =& W€ have,
Let X,, Xy, .., X, be iid variates, with mean p and variance 02,0 <o? <. Let Lt ¢ t) Lt |1 £ +0 mn.:
- ..h_..umoo Mﬂ.mﬁ ) n—yo pi/ n
" )

xX-
0 = P\l )< | H
. 5
and i .m .
% which is the characteristic function of N (0, 1). A
O(x) = .M|‘_. 2 4 el
)_ =
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hus fron the wndouienoss property of chatactathe funetion we can iy,
Ny .
Mot

S tollows standard normal distebution as n s o,

nx )
0

(e, 2, = N0, 1) o N0, 1)

(X )

9, - E(8,)
L'y, - ), - - e il
L ___r\mﬂ Nl : ]

<—-.~.AI= v

Fhus, [N, ) follows (he central limit theorem,

N(0,1)

13.3 THE DE-MOIVRE'S LAPLACE CENTRAL LIMIT THEOREM

Let Xy, X5, o X, be did Bernoulli varlate OmiIn : \
. r Agr v X arlates with common probability p of success,
HX o X4 X, # 04 X, then ;

n*

Lim 1 | Xu 2w < x (= B(x)

Wosi : %E

In other words, if Y, = -

F () by F(y), where Fy) refers to the c.duf. of a standard normal
variable,

P'roof : The characteristic function of X, is given by
bx, (1) = mT:xL

= (g + peltyr «(13.3)

Then the characteristic funclion of Y, = X —

Now npy
by (1) = E M MY, G = E M X, 1‘3&@.@

_ npl
= S mﬁq:xax&m@g

_ npt it Y

PR P [using (13.3)]

_ pit git !

- nw___.__ a + ﬁﬁ‘é ..-.m,—u\&.u

- ————e ¥

Tha Gantral Ll Theosen)

¥
We have,
e
G i
¢~ = w k! .nw?«nh {155
Using (03.5) we can weite _
o pe g (a5
npy Pq 'y ol r ! A
g 3
" o e 3 m\.rﬁﬁﬁ 7
and pe «m.:l Pt g: P 5Ty
Keplacing (13.6) and (12.7) in (134) and using p + 4 = |,
We have
e
b = |1-deoof ]
f 2 (ayl
(! n % ﬁa,_ j
log #y, (1) = _aa__ i ::
| T
= nlog (1 + Z), where Z= - 5 +._.m,,. W
where
A
|Z| = .m::ﬁ.o Tl<1#ting

So, for sufficiently large 1, one can write

log }?S =nZ

il )
=n 7 _
2
L | 1
2 in
Thus, .
&2
Lt log by, (1) =~ —
H--4e0 .
|
= Lt #y, ()=¢ 4
Her s : Sl
v . 4 1% mghw variafe
which is the characteristic function of a standar Mn: vistic hunction We can.

Th om the uniquencss perty of char ok
s -.5 5 .v:. i the standard nesrmal warate
say that the standard binomial variate converges 10 _ _

for large N. oL Fac o
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13.4 LIAPOUNOV'S CENTRAL LIMIT ._.Imomm_s
Let X}, X5, - X, be n independent random variables with p_and 3, as the

mean and standard deviation of X, (r=1,2, ..., n).
Let us suppose that the third absolute moment of X, about its mean, je.

7 E [|X, - n,|?] exist for all r.
If, r
A= py+ppt..t
2= of +03 +..+04

n

n

3 3
4% +Y3 tt¥n

and,
Lt Y _ 0 then,

L M

n
X = M X, is asymptotically normally ﬂ__.ma.:u:n.mn with mean A and

r=1
standard deviation 2.
Proof : Let ¢, (#) be the characteristic function of (X, = p ,) and

308 . X=A
aw ®) = ¢,(t) be the characteristic function of s

N X-4A - X1 +Xg+ ot Xy~ —H ==y

ow, 5 = =

n
MAXM IFV "
=] i=1 = x__ I.t_—
Z W 3

Now, we have

Xr — Ky

n
0,() =E | exp {it ) 5
r=1

Mi

n
0 | Xr — By
& E|exp {it| —%
[1 3

r=1

= m ¢ - here ¢ = < [exp it 2ot (13.8)
= ﬁmelwnu 7|3 | Where ¥r 57 | = p4i 5 (13

Now,
¢,(t) = E [exp (it (X, - p,)]

The Central Limit Theorem o

_ t g B
=141l mﬁx_\tLlM E(X, - p)* + 3 EL|X-m1]
Using Euler-Maclaurin’s expansion where |0 <1
2 a0
— b =1-—ocr+0—y + .. 018
2 6
From the assumption, we have
!
n—m 9, T 2
While observing 6 <y, %r. If y, represents the Kth absolute moment

from origin.
Now, putting K =2, 3, we have

L3172
(73) < (ra
Also, TJ%E and :&:u for the rth population (r=1,2, .., n) are equal

to o, and v, respectively.
Again,
3/2 _

:\_L = G«__
Thus from (13.9) and (13.10), we have
G = f,__.u.ru‘u, .....

r =

13
)

u..u:‘uHmZxal__.r.__w_:w.wm:Xﬂltﬁ.__uﬂ:,mn 3 L1300

~-(13.11)

Also,
_ 22 3.3
L) - o, 91 |
Bt hwlw 2 ﬁfmm)ﬂ: <3
= log (1 +}) L3
A== it +m_u t (13.12)
where, = HM.M 31 Mu
2,2 3,3
p= |E+E (using @, <1,)
© gt 6%’
Thus, A = 0 as = %
: iciently large 1.
— holds for all sufficiently
So, | M| < 5
1
== have
Thus, for |A] < w_ém can -
R
log (1 +M = bt
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2 2
_ Pllvfu!ﬁulmy‘+.lﬁu Iu

> 2"°
-1
= p+w€mleu
= A+07%
Again from (13.11) and (13.12), we have
t o> 0yt
log 9, Wu =18 |1"557 657

2
QW~N+m<w- o.«w & [

" = = L —
= log (1 +2) MMm mMu M.» 2 6

___ O.M wN 3 H 3 .— 2 .— m M
= log ¢ ﬁlu = el | H{ S+ _
> g ¥ (3 =3ty e i oIt

Summing over all r =1, 2, 3, .., n and employing

n t
b ()= ﬁm br 3 ) we have,

1
log 0.(t)= % logd,| —
r=1 b3
n n
Do D
= |_1H~ Xh|M+®_wH.— M_m_mn_. MNN.T.M—I:_M 2
52 2 53 6 2 6
2 i 2
= |P+ﬁ r:u+ mhm+r:u
2 ' ¥*18 2 6
Since, M\ —0asn— o,
2; P
:umen (t) - |W ¥t
: 12
b, () > exp e

which proves the Liapounov’s theorem.

The Central Limit Theorem
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13.5 THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM
Statement : Let X, X .
. {istributi 1 independent non-degencrate « ol
25,_ distri M _OM ?:,.n”oz 2~ Fand means By Py, i
variances o1, 63, .., o), respectively. Let

oty vA: be
sF,F

and bt
i

. ;
By, = of +qM+.:+aw_ S = Xy Xy X,

If F are n__umo::m_w continuous with pdf f, and if the

1 n
qu._.wm_M. TTE% filx)dv=0
Wil _P___

holds for all € > 0, then

condilion,

m___ = mhm ) i
M P B, =S| = g (a) is the C.DE. of N (0, 1)

Here (A, = [X-y,|>eB}
(Proof is omitted)

[Hlustration 13.1. Examine if Central Limit Theorem holds for the
following

P(X=229=2@N pPX =0)=1-2*
Solution : P(X, = + 28y = -2y P(X, =0) =1 - 2%

o= EOG) = Y X POX))

=22 P =+ (-2 P (X, =-2)+ 0P (X, =0)
= ok 2HZk+ 1) _ok oK+ Y} Ly () - mou

=0
E(x}) = 2 XK P(Xe)
= QY P(X =2+ (29 P(X, = =29 + 0P P (X, = 0)
= 92k 2kl 4 otk kN L g (1 1M|mJ
= 2.2 N.._u__,” 1)
= le2k-2k
=1

Thus, Q.w, mﬁ%wvlﬁmﬁ%r ;w =1-0=1

Using Liapounov’s Theorem, we know that central limit theorem holds if

lim LI

n—e G

n

M E|X; i..Lm

k=1

0

1

where P
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n
RS
k=1
v—.ﬁ“ mﬁx_mw y
w13 = E[1X%I7]
Now,  E[]X.—wl _u Hmr_m .an.ﬁ?,_:ﬁ_au 2% +1) 4 03 (1 - 272y
_ g+ 1 4 MRk ED
= 2R @kr i
- NHEIM»L
= 2k
n MAN=|HV
n k | - L n
31_% 2F_24224..42"= =2(2"-1)
2 = = e
DI*MNTX» .:»._H_ m J 2-1
p= " ~DA=2R - DP
n n 2
fW o= D 0k= 2.a = Jn=n"
*NH _NHM
1
g B g 201
% e A 172
1/3
lim (2"-1)
-8 e Tl
1/3 1/.\1/3-1 1/3(1/3-1)( n\1/3-2
N (o e L
_ o173 lim 3 [2
I n—o - 1/2
n
_2
| 1(27)3
= 2173 a__u_mﬂs 7 i
=21/3 .- Limit of the remaining terms tends to 0 as 11 — @
n—ro0 arﬁ [ 8
m___\m
Let u, = MHW
N?:.C\u

U o= e
o Q+:_\M

The Central Limit Theorem 315

E.rrmvm 1/3
Nn—so n—swo Vi 22°>1
D

n

=nlv8wm=IvSmc vanummalv&
o

Hence, CLT does not hold.
Ilustration 13.2. Let X;, X,, ..., X, be a sequence of iid random variables.
Show that CLT holds for the following pdf

1
fay =3 e, —m<x<w

1
Solution :f(x) =3 e, ~o<x<w

EQ)= [ xf(x)dx
= .-.H..Wmuﬁmn
= W ._. xe Mdx
0 @
= = .ﬁ xe M dx +_. xe M dx
2 i /
O. s aa —_ v |
ik | xe Ndx + | xe ¥ dx : ~MMMM“HM

T2 0

0 o
u.w- .—Hnuau+.m_n|nwbn__mn

-

0
aX .Tmnmuim
2
]

By : {

—
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J e () 41221

w

[Letx =—y, dx = — dy as

|
b’ | =

HHIS_-..._\\_"B\HHQ\._\HOH
1 ~ 3 my
.. e Vdy+1

W_r_mi_
1

[1+1]

1]

2
=0

E(X?) = .ﬁ.amL‘.AHEH
2

ac
= ‘_. 21 dx
-0

HS

oo 2 ,Ja]

JM._.RQ dx
-

0 3]
= WMV .— 12 e dx + ._.Hmmu_i dx
-0 0

= W% w_. e ™ gy 4 ﬁw.-..«m e *dx
-3 0

B | =

0 )
.— x?eXdx+ _.Hm e ¥ dx @)
0 0

0 0
Now, ._. x2e gy = ._.TSN e (~dy)

__..meknl.?&‘dulnmx‘.«HJSL\HS\HHD;‘HO._

0
= [Py

o

The Central Limit Theorem
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I
7]
I
]

A3

Again, ._.Hwﬁ.sua_.._ = ._. e o= B=B-1=2=2 A6
0 0

Using (5) and (6) in (4) we have

E(X?) w _NLT_M % 4
2 V(X) = E(X%) - [E(X))P=2-0=2
Also, moment generating function of X is

My (t) = (&™)

_. n.;_ ulm:E a.,._
2

2

0 0
Now, ‘— MUY iy = ‘ﬁ DY (—dy)

-0 -0

7
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H§~H"\“U&HHIQW~H"I8~%“8\HHQ\WHDH
-]
B -_-mlﬂ +)y W,—i :m.{
0
i
T 14t
]
T 14t
= o
¢ 0
_n
=2

|~

[

—t
Using (8) and (9) in (7) we get
KS-M\%+F* 1 |1-t+1+t 1
=5 (14 11 T2 [@+0A-8] T 1-F

=) E(X)=nx0=0

i=1

n
Now, E M X;
i=1

C\MUXLNM«AXLH?NHN:

=1 i=1

_LX-EQX)  Yox -0

e

()

2 X,
= %= ~N(@,1)

M,(0)=M,
T X;

-
I
=

The Central Limit Theorem

Amv = 2
1=t

| uT{mB §
X n
2 : g 2"
] lim M,(f) = hrn_s m Llﬂ_nl
(_._, = www\u

.. Hence CLT holds for the pdf

Illustration 13.3. A random sa

population whose
probability can we ass

distributed random variables then

X-H ;
i iy N(0, 1
T is asympotically N( )

mean is 60 and vari
ent that the mean of the sample will not differ fromp=

We know, by CLT, if {X,} is a sequence

319

which is the mgf of the standard normal variate

1
flo) = Mﬁ_k_\ —N<X<®

mple of size 100 is taken from a

ance is 400. Using CLT, with what

60 by more than 4?
Solution : Given, sample size, 1 = 100
Population mean, p= 60
Variance, o = 400
c=20

of independently and identically

o
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Now, P [(—u)>4] =P [¥—60)>4]

T-60 4 J
=5 a/n U/‘/’T

T-60 4 J
=P[20/10 20/10

¥ —60
=P[Z>2] [using CLT,Z = 20/10

=P@Z>0-P(0<Z<2)

~N (0, 1)]

1
=P(@Z>0)-7 P(=2<Z<2)

1
=05 -7 (09544)

= 0.0228
.. Probability that the mean of the sample will not differ from p = 60 by

more than 4

1=P [()_(—;1)>4]
1 -0.0228
0.9772

nn

EXERCISE

. State Liapounov’s form of central limit theorem. Let {X;} be a sequence

of independent Bernoulli variate with
P(X,=1) =p,=1-P(X, =0)
Show that [X,} obeys central limit theorem. [IAS, 2002]

- Explain the concept of central limit theorem. Let {X ) bea sequence of
n

uniformly distributed random variables over (- Bn*, B’

¢ = pn*, Bn*), 53 ¢
Test if sFro_ng law of large numbers, weak law gf larB e )m? >b0 k 4 %
central limit theorem holds. - 5 ;Eq;r;da&]

- State and prove Lindeberg-Levi central limit theorem [1AS, 1981]
Dry imi ; ’ ’
. Prove that central limit theorem holds for independent and identically

distributed random variables with finite variance, [1AS, 1981]

(@ ( max 6&)/5,, -0

I<sks<n

SO R R e



