Chapter 1

Convergence of Random Variables

1.1 Introduction

In this chapter we deal with the convergence properties of a sequence of random variables. The
different types of convergence of random variables dealt with in this chapter are convergence almost
surely, convergence in probability, convergence in the r** mean and convergence in distribution.
The concept of the convergence of random variables is useful in understanding various features
of Statistics like, laws of large numbers, central limit theorem, consistency of estimators and so
on. The chapter is prepared based on the discussion made in ”An Introduction to Probability and
Statistics” by Rohatgi and Saleh. The general concept of convergence can be stated as follows, If
X, = {X1, Xo,...} is a sequence of real numbers we say that {X,,} converges to a number X if for
all € > 0, there exists N such that |z, — x| < € for all n > N. Based on this idea we can approach
different types of convergence of random variables.

1.1.1 Convergence Almost Surely

We say that X, converges to X almost surely (a.s.) if
P{X, - X}=1

In such a case we write X,, — X a.s., or lim,_.c X5, = X a.s. or, X, =5 X.

The concept of convergence almost surely is also called convergence almost everywhere. The conver-
gence almost everywhere implies convergence in probability, and hence convergence in distribution
as well. This concept of convergence is used for the strong law of large numbers.

1.1.2 Convergence in Probability

We say that X,, converges to X in probability if
P{|X,—X|>¢}—0

In such a case we write X,, — X in probability, or lim,_,~, X,, = X in probability or, X, £ ox
The concept of convergence in probability is used in the weak law of large numbers. convergence
in probability implies converges in distribution.
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1.1.3 Convergence in r-th Mean

We say that X,, converges to X in r** mean if for r > 1, for all E|X,|" < oo, for all n, and
E{(X,-X)"}—0

This means that the expected value of the difference between X,, and X in the 7" power converges
to zero. In such a case we write X,, — X in the 7" mean, or lim,,_o X,, = X in the r*” mean or,
X, 5 x.

Some derived cases for the convergence in r** mean are convergence in mean, obtained by putting
r = 1 and convergence in mean square obtained by putting r = 2.

Now, convergence in 7" th mean provided r > s. Thus convergence
in mean square implies convergence in mean. Also, convergence in 7"
in probability and hence convergence in distribution.

th

mean implies convergence in s
mean implies convergence

1.1.4 Convergence in Distribution

Let F), be the distribution function of X,, and F* be the distribution function of X. We say that
X, converges in distribution to X if
F,(x) — F*

for all x such thatF™* is continuous at . In such a case we write X,, — X in distribution, or
lim,, o X;, = X in distribution or, X, D x.

Convergence in distribution is the weakest form of convergence, so it is also called as weak con-
vergence. However, convergence in distribution is implied by all the other type of convergence
discussed earlier. Thus, it is the most common and sometimes most useful form of convergence as
well as it is used in the central limit theorem and in case of the weak law of large numbers. Con-
vergence in distribution is also sometimes called as convergence in law, here law means probability

law i.e. probability distribution, X, D X is also written as X, L x.

1.2 Some Theorems Related to Convergence in Probability

Theorem 1: Let X,, converges to X in probability and let g(.) be a continuous function defined
on R then g(z,)converges to g(z) in probability.

Proof: Since g(x) is a continuous function on R therefore by the definition of continuity for
every € >0 3 § > 0 such that,

|g($n) —g(x)| <e€ Zf ‘xn —$| <9
ie |xy, —z| <8 =|g(xn) —g(x)| <€
= Pllzn — x| < 0] < Pllg(xn) — g(x)] < €]
Since if A = B, then P(A) < P(B) or

= Pllg(zn) — g(2)| < € = Plln — 2| <]
= lim P[lg(z,) —g(x)| <€ > 1 since X, L x

= lim Pllg(an) — g(a)| < ] — 1
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P
= g(zn) — g(z)
Theorem 2: If X, 5 X = X, - X 50

Proof:Let X,, — X il 0, so
Pl(Xp,—X)—0[>¢ —0 as n — o0
Pl X, —X|>¢ —0 as n— o0
= X, & X by definition.
Thus, X, — X 5 0= X, 5 X
Conversely, let X, Zx , then from the definition of convergence in probability we have,
Pl|X, —X|>¢ —0 as n— o0
Pl(X, —X)—0[>¢ —0 as n — 0
= X, — X 20 by definition.
Thus, X, > X = X,, — X 50

Theorem 3: IangX:Xn—Xmﬂ()as n,m — 0.

Proof: Let
A = {|X,—Xn| <¢€}
{1Xn — X+ X - X,| <€}
{|Xn — X|+|X — Xn| <€}
> {|Xn—X|<§and |Xm—Xy<§}

U

€ €
(1%, = X| < 5} 0 A1X = X| < 5}

= BncC
where B = {| X, — X| < §} and C = {|X,, - X| < §}
Thus,
A 2 BNC
= P(A) > P(BNC)
= _-P(A) < —-P(BNC)
=1-P(A) < 1-P(BNC)
= P(Ad) < P(BNC)
= P(d) < PBUC)
=~ P(A) < P(B)+P(C)
= P(|Xn— Xp| >¢) < P(Xn—X]|< g) 4 P(| X — X| < %)
= lim  P(Xp—Xn|>e < P(X,-X|< g) + P(| X — X| < %)
= n_}Qloil;Inl_)oo P(| X, —Xnl>e€¢) < 0
= P([(Xp,—Xm)—0>¢ — 0Oasn,m— oo
Thus, X, — Xpn = 0
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Theorem 4: If X, 5 XV, v =Xx,+V, L X +Y.

Proof: Let us consider the set,

{({Xn+Y,—X+Y|<e} = {|Xn+Yn—-X-Y|<e}

Now considering, A = {|Xn +Y,—X+Y|<e}, B={X,—X| < §}and C={]Y, - Y| < §},

= {|X, - X+Y,-Y[<e}
O {|Xn—X|+|Y,—Y|<e
> {IX, - X| < S} {lYa-Y]< 3}

we have,
A D BnC
= P(A) < P(B)+P(C)
= P(|X,+Y, —X+Y|>¢) < P(X, X\z§)+P(yYn Y| > 9
= P(| X, +Y, - X+Y|>¢) < 0
Thus, X, +Y, & X4+Y

Note: Likewise, by taking A = {|Xn -Y,—- X - Y‘ < €} and proceeding in the similar manner
we can show that, X,, — Y, Ex_v. Thus we may write, X,, £Y, Ex+y provided X, £ x

and Y, £ Y.

Theorem 5: If X, il X, k is a constant, then kX, 2 kx.

. P
Proof: Since,X,, — X, so we have,

Pl| X, —X|>¢ — 0Oasn— o0

= P[|X, —X|<¢ — lasn— oo

= Pl-e<X,—X<¢ — lasn— oo

Pl—ke < kX, —kX <ke] — lasn— oo

= P[|kX, —kX|<ke] — lasn— o0

= P[lkX, —kX|<e] — lasn— oo
Thus, kX, — kX

Theorem 6: If X, TN k, where k is a constant, then X2 Z k2.

Proof:

P[|X2 — k*| > €]

<

P[(X2—k*) > e+ P[(X2 - k?) < —¢

PIX2>k*+e+ P[X2<k®—¢

P[X, > Vk2+ €+ P[X2< 0]+ P[0 < X, < VE2—¢
[

P[X, > k| + P[0 < X,, < VK% — ¢

Both the terms in the right tends to 0 as n — co So, X2 L2,

Theorem 7: If X, Lt XY, Lt Y = X,Y, Lt XY, where X and Y are constants.
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Proof:We have,

(X + Ya)? = (X — Yp)?
4

XnY, =

Now, we know that X,, + Y, x4y provided X, £ X and Y. Ly, Thus,

(Xn+Y)? = (Xu = Yi)? p (X+Y)2— (X —Y)? 4XY

= XY
4 4 4

So, X,Y, & XV
Theorem 8: If X, Lt X, and Y is a random variable, then X,Y 2 xy

Proof: Since Y is a random variable, so we can have, for every § > 0, there exists k > 0,
such that, P[|Y| > k] < g Thus,

P[|X,)Y —XY|>¢ = P[|X,—X|>el|Y|>Ekl+P]|X,—X|>¢|Y| <k
— P[Y]> KP[X0 — X| > | Y] > k] + P[[ X0 — X| > € [V] < ]
) €
-+ Pl|X, — X —
< S+ PIX-X]> )

Now, as n — oo, P[|X,, — X| > 7] — 0. So, P[|X,,)Y — XY| > ¢] — 0 as, n — c0. So, X,,Y’ L xv.
P P P
Theorem 9: If X,, — X, and Y,, — Y, then X,,Y,, —» XY

Proof: Since X, > X = X, - X 5 0and ¥, 2V =V, - Y 2 0. Thus,

(X, - X)Y,-Y) & o0

- X,Y, - XY, -YX,- XY 2 0

= XY, - Xy £ o

- XY, & Xy
Since, XY, L XY and XY x Y, using the previous theorem.

Theorem 10: If X,, © X, then X2 L x?
Proof: Since X, L x= X,—X £o. So,

(X, - X)X, —X) & 0

= X2 XX, - X, Xx+x> £ 0

=x2-x2 & o

Since, X, &> X = XY, & XY so, putting X,, = Y,,, we have X X,, = X2.



6 CHAPTER 1. CONVERGENCE OF RANDOM VARIABLES

1.3 Some Theorems Related to Convergence in Law
P L
Theorem 11: If X,, — X, then X,, > X

Proof: Let us define, the event, X < 2’ such that,

(X<2) = Xp<z, X< UX,>z,X <2
C (X, <2)U(X,>z,X<2)
So, P(X<1') = PX,<z)+P(X,>zX<2)
= F(z') < Fu(2)+P(X, >z X <2 (1)

Now, X,, 2 X so, P{|X, —X|>¢e} —0asn— o0
Also, if 2/ < x then

P(X,>z,X<2) = P[X,—X|>z—2]
Choosing z — ' = ¢, we would have

PX,>z,X<2') = P[|X,—X|>¢ —0asn—
Thus, P(X,, >z, X <2') — 0Oasn— oo -(2)

So, replacing (2) in (1), we have,

F(2") < F,(z) when n — oo and for 2’/ <z
<

Thus, F(2') < lim Inf F,(z), 2’ <=z -+ (3)
n—oo
(Xp<2) = (Xp<z,X<2"NUX,<z,X>12")
C (X< YuX,<z,X>12")
= P(X,<z) = PX<2")+P(X,<z,X >2")
= F(z) < F@")+P(X,<z,X>2") (4)

Now, X, 2 X so, P{|X,, — X| > €} — 0 as n — o0
Also, if 2" > z, then,

P(X,<z,X>2") = P[|X,—X|>2"—-1]
Choosing " — x = €, we would have

P(X,<z,X>z2") = P[|X,—X|>¢—0asn— oo
Thus, P(X, <z, X >2") — 0Oasn— oo -+ (5)

So, replacing (5) in (4), we have,

F(2") > F,(z) when n — oo and for 2" >z
Thus, lim Sup Fj,(z) < F(2") ,2" > - (6)
n—oo

Thus, from (3) and (6) we have,

F(2') <lim InfF,(x) < lim SupF,(z) < F(2") for 2/ <z < 2"

Now, choosing z as a point at which F(.) is continuous and allowing 2’ — x and 2" — z, we have,
F(z) = lim, . Fy,(z) at all points of continuity of F.
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Note: However the converse is not true i.e. X, L X does not imply X, L X. Let the joint
distribution of (X, X) is given by,
PX,=0NnX=0=PX,=1NnX=1]=0and P[X,=0NX=1] = P[Xn—lﬂX:O]:f

Now, F,,(0) = 1 and F,(1) = 1 and likewise F(0) = % and F(1) = 1. Thus,X, L x

Now,P[]Xn—X|>%]:P[Xn_OX_l]—i—P[X LX=0=3i+1=1#0
Thus, X, L X does not imply X, Lz x.
Theorem 12: If X, Lo — Xn Lo
Proof: Let X, £V,
So, we have
lim P[|X,—C|>¢ = 0fore>0
:>nangoP[ C’>eorX —C<—¢ =0
:>n1LIEOP[Xn—C26}+1}LH;OP[X,Z—C§—6] =0 (1)
From (1) we have,
JLI{.IOP[XN—CZG] =0
:>lim[1—P(Xn—C’<e)] =0
= nlirlgo PX,-C<e¢] =1
:>nlLH;OP(Xn<€+C)] =1
= F,(C+e¢ =1 -+ (2)
Also from (1) we have,
lim P[X,, —-C<—¢ = 0
n—o0
#nlir{:oP[XnSC—e] =0
=F,(C—-¢ = 0 -+ (3)

Thus, from (2) and (3) we have, X, Lc
So, X, LC=x, L0
Conversely, let X, Lo
Pl|X,—-C|>¢ = PX,—C>cor X, —C <¢
P[X, —C>¢+ P[X, — C < —¢
—P[X, —-C<¢€+PX,—C<—¢
— P[X, <e+Cl+P[X, <C—¢

= 1-F,le+C]+ F,[C —¢€] -+ (4)
Now, since X, L C, so, we have,
lim F.(x) = 0ifz<C
T = lifae>C
So, taking limit on both sides of (4), we have,
lim P[|X,,—C|>¢ = 1—lim F,(C+¢)+ lim F,(C—¢)=0

n—oo n—oo n—oo
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Thus, X, L ¢ when Xn Lo
So, we have, X,, Lo — X Lo

1.4 Some Theorems Related to Convergence in r* Mean
Theorem 13: If X, converges to X in mean square, then show that X, I x

Proof: The Markov’s inequality is given by,

E(X
Pxzq = 2
a
Given, X, 2 X
= lim BE(X,—X)? = 0
Replacing X by (X, — X)?> and aby €, in (1), we have,
BE(X, - X)?
2 2 n
Pl - xp 2 < P AT
E(X, — X)?
S P(X-X)>q < EEn XS
€
= lim P(X,—X)>¢ < 0

n—oo
P
Thus, X, — X.
Theorem 14: If X,, converges to X in 7" mean, then show that E[|X,|"] — E[|X|"].

Proof: Let 0 < r <1 then

E|X,|" ElX, - X +X|"

< B|X,— X[+ B|X[

Using C.R inequality.

= E|X,|" - E|X|" < E|X,-X/|" - (1)
Interchanging X,, and X, we have,
= E|X|" - E|X,|" < E|X-X,|" - (2)

Combining (1) and (2) we have, X,
[E| X" = EIX["] < EIX =X,
Taking limit of n — oo on both sides and using the fact that X,, — X, we have, E|X,|" — E|X|"
asn —ooand 0 <r <1. -+ (3)
Now, let » > 1. Consider,
E|X," = BE|X,-X+X|
1 1 1
= Er|X,|" < Er|X,-X["+Er|X|"

'EI X +Y|" < C (B|X|" + E|[Y|") ie. C. =1 for r <1 and = 2"~! otherwise.
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Using Minkowski’s inequality.?
= Ev|X,|" -~ E*|X|” < Ev|X,—X["
Now taking the limit as n — oo, in both sides and using the fact that X, — X, we have,
E%\Xn|’" — E%\X\T as n — oo
= E|X,|" — EX|", r>1 < (4)

Combining (3) and (4), we get the desired result.

th

Theorem 15: If X, converges to X in r** mean, and if » > s then show that X, converges

to X in r** mean.

Proof: Let us write 5, = E|X|" < co.
By Liapounov’s inequality, we have for arbitrary chosen k, 2 < k <mn

Thus for,r > s (or % < %), we have,
{(B|X, - X|'}s < {E|X,-X["}7
= E|X, - X|° < (B|X,—-X|")"
= lim E|X, - X|* < lim {E|X, - X"}
n—oo n—oo
= nlLrgOE\Xn ~ X < 0as X, > X

Theorem 16: If X,, converges to X in mean square, then show that E[X,] — E[X] and E[X?2] —
E[X?]

Proof: To prove E[X,] — E[X], we proceed as follows:

Since X, 2 X so using Theorem 15 we have X, Lx

@)

Thus, lim E(X, - X) =

n—oo

= lim F(X,) =

n—oo

&

X)

(
Now, E(X?) = E[X,-X+X)}
= E[(X, - X)*]+ E(X?) - 2E[(X, — X)X]
> E[(X, - X))+ E(X? -2VE[X, — X]?E[X?]
using Cauchy-Schwartz inequality E(|XY])? < E(|X|*)E(|Y|?)

Taking limit as n — oo on both the sides and using the fact that X, 2 X we get the desired result.
In addition we get X, — X = V(X,,) — V(X).

2E%‘X+Y\T§E%|X|T+E%|Y\T for r > 1.
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1.5 Some Theorems Related to Convergence in Law

Theorem 17:Let {X,,,Y,,},n=1,2,--- be a sequence of random variables then
X, - Y, Zo0oandV, Ly =X, LY.

Proof: Here we are to show,

X, — Y, H0andY, LY =X, LY

i.e. toshow, X, — Y, 20and V¥, 2V = X, 2 Y.

i.e. toshow, Y, — X, 20and ¥, 2V = X, LY.

Let € > 0 be arbitrary. Let X be a continuity point of the distribution function of Y (i.e. of Fy-.
Then,

PX,<z) = PX,<z+Y,-Y,)
= PY,<z+(Y,—X,))
= PY,<z+(Y,—X,),Y,— X, <e¢
+P(Yn <z 4 (Yn— Xn),Yn — Xn > €)
< PYa<z+e)+PYn—Xy>e)
< PYn<z+e)+P(|Yn—Xn|>¢)
= Fx,(x) < Fy,(z+€e)+ P(|Yn - Xa| =€)

Now, |X,, — Y| £ 0, so,
lim Fx,(x) < lim Fy, (z+¢€)
n—oo

n—oo
= Fy(z+e) asY, LY

lim FXn (x)

n—oo

lim Sup Fyx, (x)
n—oo

= Fy(ﬂ? + 6)
= Fy(z+e¢)

v

v

Similarly, it can be proved as follows,

lim Inf Fx, () > Fy(z+e)

n—oo
Let P(Y,<z—¢) = P{Y,<z—-€e+X,-X,)
= PX,<z+ (X,—-Yn) —¢)
= P(Xp<a+(Xp—Yy)—€Xn—Yy<e)
PX,<z+(X,-Y,)—¢6X,—-Y,>¢
< PX,<z)+P(X,-Y,>¢
= Fy,(r—e€) < Fx,(v)+P(X,—Y,>¢€)
lim Fy, (x —¢) < lim Fx, (z)+ lim P(|X, —Y,| >¢)
n=oo n=oo n—oo
= Fy,(z—¢€) < nh_)rgo Fx, (z) Since, |X,, — Y| Zoandy, 5Y
= Fy,(x —e€) < lim Inf Fx, (z) < lim Sup Fx,(z) < Fy, (x +¢)
n—oo n=oo
Letting ¢ — 0, we have,
= Fy,(z) < lim Inf Fx,(z) < 71113010 Sup Fx, (x) < Fy, (z)
= hm Fx,(x) < Fy, (x)

n—oo

:>Xn—>Y
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Thus, | X, — Y| 5 0and ¥, 5Y = X, 5V

Theorem 18: Let {X,,Y,},n = 1,2,--- be a sequence of pairs of random variables and C is
a constant, then

() X, 5 X, Y, 20=X,+Y, B xxC.
b X, L X, v, 50c=Xx,y,5%Cx,C#0.
e X, 2 x,v,50=x,7,L0.

X, 2 X, Y, bo=X b X oxo.

Proof: We have from the previous theorem that,
X, - Y, Z20andY, Ly =X, LY.
(a) Since, X, L X, therefore X, £+ C 5 X +C

Also, Y, L0 = v,-c 5o

S Y+ Xy - (Xn—C) 50 = Yo+X, 5 (X,-0)
=Y, +X, & X+C
Also, Y, HCc = v,-cEcC

So, Xp—C— (X, -Y) 50 - X,-V, 2 Xx,-C

So, X, ~ YV, L x - C

(b) When C # 0
X, 2 x v,2o=x,v, %X,
Consider,

XY, - CX, = X,(Y,—-C)

Since, X, %= X and ¥, > Cor Y, —C L 0= CX, %2 cX
It follows that,
X, (Y, — C)
= XY, — CX,
. P L L
Using| X,,)Y,| = 0,Y, =Y = X, =Y
- X,Y, 50X

v |
(e}

©X, L XandV, £ 0= X,7, 20
We have for any fixed number k& > 0,

€ €
P(|XnYn| =€) = P(|XpnYa| > € |Va] < E) + P(|XnYn| > € |Ya| > E)
€

< P(Xal 2 k) + P([Ya] > 1)

Since, Y, il 0, and X, L X, it follows for any fixed k > 0

lim P(|X,Y,|>¢) < P(|Xn|>k)
= 1-P(|X,| <k)
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Since, k is arbitrary we can make P(|X| > k) as small as we decrease by choosing k large.
lim P(|X,Y,>¢ < 0
n—oo
P
=|X,Y, — 0
(d)Now, X, % X and Y1 & -1
= X, Y, ! c!

n

=

Q< <

L

=
Xn L
e
Yy

1.6 Solved Illustrations

Ilustration 1: Let {X,,} be a sequence of random variables such that,

1
PX,=1 = — and
n
1
PX,=0 = 1—-—
n

Then show that X, converges in mean square to X, where X is a random variable degenerate at
zero. Also show that X, converges to 0 in probability.

Solution: Here we have,

E[X2] = 12xP[X,=1]+0%x P[X, =0]
= 1><1:l
n n

So,

E[X2] — 0 as n— oo
E[| X, —0*] — 0 as n— oo
=X, > 0= X, > X where, X =0

Thus, the random variable X is degenerate at 0. Now,

1
P[X,=1 = — and
n
1
P[X, =0] = 1-— — implies
n
1
PIX, >0 =
n
1
= Pl X, >¢ = —if0<e<]1
n
= 0ife>1
Thus;
lim P[|X,|>¢ = 0
n—oo
= lim P[|X,—0][>¢ = 0
n—oo

:>Xn£>0
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IMlustration 2: Let X, Xo, .-, X,, be standardized random variables with E(X;l) < 00. Find the
limiting distribution of

\/E(X1X2 + X3 X4+ ...+ Xgnlegn)
X2+ X2+ +X?

Zy =

Solution : Let Y; = X5, 1 X5;, accordingly we have,
E(Y;) =0and V(Y;) =1 and so,
Y,
Z?:l Yj ~N(0,n) = 2?21 7% ~ N(0,1)
X1Xo+ X3 X4+ ...+ Xop—1 X9,

Thus we have, NG ~ N(0,1)
X1 Xo+X3Xy+ ...+ Xop 1 X
o Al 2+ X3 X4+ ...+ Xop—1 QnAN(O,l) (1)
N4
Now,
BE(X}) = 1
> X24x2+..+x2 B og
X2+ X2+ +X2

n

We know that, if

X, L X and Y,5C(C#0)
X, L X
Then, ?n — 6

Thus, from (1) and (2) we have,

\/ﬁ(Xng + X3 X4+ ...+ XQn_lXQn)

A
" X2+ X3+ ...+ X2

~ N(0,1)

Ilustration 3: Let X1, X5,---, X, be i.i.d N(0, 1) variates, then find the limiting distribution of

V(X1 + Xo+ ..+ Xp)
X2+ X34 ..+ X}

Solution : Here we have, X; ~ N(0,1) for all ¢

Thus we have, X; + Xo+ ...+ X, ~ N(0,n)
= X1+X2++Xn

~ N(0,1
T (0,1)
X1+ Xo+ ..+ X
Thus, 22T 22T T A0 Ly ) (1)
Jn
Again,
XP+X3+..+X2 ~ 2
S EBEX?4+X24+..+XY)H = n
= X2+x2+.+x2 B g - (2)
Again, X, Lx and Vv, 5 C,(C #0)
Xn L X
Then, =2 =
en, Y, c
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Thus, from (1) and (2) we have,

V(X1 + Xo 4 ...+ X,,)
X3+ X5+ + X2

~ N(0,1)
Ilustration 4: Let X1, Xs,---, X}, be i.i.d N(0, 1) variates, then find the limiting distribution of

n
Z, = —, where
n

X1 X3 Xon—1
U,= —+—/—+ ...
n <X2 + X, + ...+ Xon >

and V, = X2 + X2+ ... + X2

Solution : Here we have, X; ~ N(0, 1) for all ¢

Thus,
Xoj-1
Y;="2— ~ (C(1,0
J XQJ ( )
n
Y;
= — ~ ((1,0
> (1,0)

Y;
=Yy 2 ~ :
Zn C(1,0) as n — o0
7j=1
n
=27

Jj=1

3 |
=
Q
=
=
=

Also we have,

Va=X24+X2+..4+X2 ~

=EWV, = n
= Vn L o
Vn P
— 1 (2
noz 2
Again, X, = X and Y, 5 C,(C#£0)
X, L X
Then, — —
en, Y, — ©
Thus, from (1) and (2) we have,
Un
7, = 22 C(1,0
Dn o)

n

Illustration 5: Let X be a degenerate random variable degenerate at the point X = pu. Let

X1, Xa, ..., Xy be n iid random variables, with mean g and variance o2. Z, is defined as
Xi+Xo+...+ X
1 A2t A o that, Z, 5 X
n

,n_

Solution : Here we have, X as a degenerate random variable degenerate at the point X = pu.
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So,
PX=p =1
Also E(X;) = p
and V(X;) = o2
Xi+Xo+...+ X
= B(Z) = E( 1+ Xo 4.+ n>:
n
0.2
and V(Z,) = —
n

Then by Chebyshev’s Inequality, we have

o
P(|Zn —p| >€) < o}
= lim P(|Z, —p| >¢ =

n—oo

= lim P(|Z,—X|>¢) = 0
n—oo

Hence, Z, I x using the degenerate nature of X at u.
Illustration 6: Let X1, Xo, -+ be a sequence of random variables with corresponding distribution
function given by F,(z) = 0if x < —n,= (z+n)/2nif —n < x <n, and = 1 if z > n. does F,

converge to a distribution function?

Solution:Here we have,

F,(x) = 0if x<-n
= rn if —n<ax<n
2n
= 1if 2>n
z+n 1+2 1
Thus, F(—c0) = 0

with jump points existing at —n and n and continuous at the jump points thus F(x) is a distribution
function as well.

Illustration 7: Let X, Xa,--- be a sequence of random variables which are iid U(0,1). Let
Xy = min(Xy, Xa, -+, X,,) and consider a sequence Y,, = nX(y. Does Y, converge in distribu-

tion to some random variable Y. If so, what is the distribution function of Y?

Solution:Here we have, X1, Xa,---,~ U(0,6). So, we have
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flxy) == and so, F(x))=1-

file) = n(l-F)" f(z)

6 6
Now, let Y, =nX) so [J|= !
n
B Y (n—l)}
1 [v y \ (1)
= — 1 _ —
= Gl) 6/, ( nH) dy
— (12
=1 (1 n9)
Now, lim G(y) = lim 1— (1 - %)
n—o00 n—0o00 n

= 1- e_%, which is the DF of a exponential variate.

Thus, Y converges to an exponential variate with mean % in law.

Illustration 8: Let X1, Xo,--- be a sequence of iid random variables with PDF f(z) = e~ %9 if
r>60,and =0if z < 6. Showthatynil—i—e.

Solution: Here we have,

fl@) = e* z>0
= 0, <6
) = p(x=X)_1 N
Also, E(X,) = E <n) = > B(X) (1)
EX;) = /oo ze "z
0

Now, putting x — 0 =y
= / (y +0)e Ydy
0

= / ye_ydy—}—/ e Ydy
0 0

= 1+6 -+ (2)
EXi+Xo+...+X,) = nEX;)=n(1+90) - (3)
= F(X,) = 1+0 replacing (3) in (1).
= nlggo E(X,) = 1+6
=X, 5 146
=X, 5 146

Illustration 9: Let X, Xs,--- be a sequence of iid random variables with PDF f(x) = fe~ %% if
x>0, and = 0 if x < 0. Show that minX, Lo.
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Solution: Here we have,
= fe % >0

)

F(z) = /I O 0%dy =1 — 70"
)
)

0

= n[l-F)" "' f(y)
= nlhe "%
1
= EY) = oy
= lim E(Y) = 0
=y Lo

Thus, minX, Lo.

Illustration 10: If X,, converges in mean square to zero in such a way that > °° | F(X2) < oo,
then it follows that this converges almost surely to zero.

Solution: Here we have,
[ee]
Y E(X])) < o
n=1

[e.o]
=E) X)) < oo
n=1
Now, if E(X) < oo then X is a finite random variable with probability 1.

Thus, E(Z XH<oo = P(Z X2<o0)=1
n=1 n=1

Thus, > 7, X2 is a convergent series, and for a convergent series we have the n'® term in limit
tends to 0.

Hence, P(lim X2=0) = 1
n—oo

= P(lim X, =0) = 1
n—oo

Thus, X, “3 0

Exercise
1. Explain the different types of convergence of random variables with the help of illustrations.

2. Let {X,,} be a sequence of independent random variables such that P(X,, =0) =1 — # and
n =1, 2, ... Then show that X,, does not converge to zero in mean square.

3. Let {X,} be a sequence of independent random variables such that P(X,, = 1) = p, and
P(X, =0)=1-p,. Then X, 3 0 if > pn is convergent.

4. Let X1, Xy, -- be a sequence of iid random variables with PDF f(z) = e¢~**% if £ > 6, and
= 0 if 2 < 0. Show that min (X7, Xa,---,X,,) converges to 6 in probability.
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5. Let X, Xa,--- be a sequence of iid random variables with PDF U(0, 6), then show that max
(X1, Xo, -+, X,,) converges to 6 in probability.

6. Let {X,} be a sequence of independent geometric random variables with parameter 7* where

n >m > 0. Let us define Z,, = X,,/n. Show that Z, L G(1,1/m).

7. Let {X,} be a sequence of independent random variables such that X, L X. Let a, be a

sequence of positive constants such that a, — 0o as n — co. Show that a, !X, 2o,

8. Show with the help of an example that convergence in distribution does not imply convergence
in probability.



