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In probability theory, a multivariate random variable or random vector is a list or vector of 

random variables each of whose value is unknown. The individual random variables combine 

to form a random vector and are grouped together as they are all part of a single statistical 

system - often they represent different properties of an individual statistical unit. For example, 

while a given person has a specific age, height and weight, the representation of these features 

of an unspecified person from within a group would be a random vector. Normally each 

element of a random vector is a real number. 

More formally, a multivariate random variable is a column vector X = (X1, X2,…,Xp) or 
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(or its transpose, which is a row vector) whose components are scalar-valued random variables 

on the same probability space as each other,  [.]., PA  , where   is the sample space,  A is 

the sigma-algebra (the collection of all events), and P[.]  is the probability measure (a function 

returning each event's probability). 

Every random vector gives rise to a probability measure on Rn is known as the joint probability 

distribution, the joint distribution, or the multivariate distribution of the random vector. 

The distributions of each of the component random variables Xi are called marginal 

distributions. The conditional probability distribution of Xi given Xj is the probability 

distribution of Xi when Xj is known to be of a particular value. 

The mathematical expectation of the random vector X is a vector of the expected value of the 

individual variables Xi (i = 1, 2, …,p). More precisely,  

E(X) = E 
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Where, 




 iiii dxxfx )(  in case Xi is a continuous random variable  

                  =  ii px in case Xi is a discrete random variable 
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The covariance matrix (also called second central moment or variance-covariance matrix of a 

random vector is of the form p × 1 is an p × p matrix whose (i, j)th element is the covariance 

between the ith and the jth random variables. The covariance matrix is the expected value, 

element by element, of the p × p matrix computed as E[(X - E(X)) (X - E(X))], where the 

superscript  refers to the transpose of the indicated vector.  

So, 

 = E[(X - E(X)) (X - E(X))] = E[(X - ) (X - )]  
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Where,       iiiiiiiiii dxxfxXEXEXE )()(
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Multivariate Density Functions, Marginal and Conditional Densities  
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 be a random vector  

Let f(x1, x2,…,xp) be the density function of the random vector X. So, we have,  
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Now, the random vector X be subdivided into two sub-vectors X(1) and X(2) where we have  

X = 
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which is divided into two sub vectors X(1) = 
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where X(1) 

is of order k  1 and X(2) is of order (p-k)  1  

Then the marginal distribution of X(1) is given by,  
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the random variables in the random vector X is integrated in the entire range for the random 

variables classified under X(2)  to get the marginal distribution of X(1) 

Similarly, the marginal distribution of X(2) is given by,  
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The conditional density function of X(1) when the other vector X(2) is already observed as x(2)  , is 

given by,  
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Likewise, we can have the conditional density function of X(2) when the other vector X(1) is 

already observed as x(1) as,  
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